hkivancoral's picture
End of training
c1cd881
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_base_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9131886477462438

smids_5x_deit_base_adamax_001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7497
  • Accuracy: 0.9132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.329 1.0 376 0.4277 0.8464
0.2087 2.0 752 0.3407 0.8698
0.2485 3.0 1128 0.3788 0.8598
0.178 4.0 1504 0.4197 0.8531
0.1258 5.0 1880 0.4173 0.8648
0.1206 6.0 2256 0.3586 0.8848
0.1282 7.0 2632 0.3517 0.8865
0.0583 8.0 3008 0.5359 0.8765
0.0747 9.0 3384 0.5100 0.8731
0.0435 10.0 3760 0.5516 0.8781
0.06 11.0 4136 0.3933 0.8998
0.0257 12.0 4512 0.5267 0.8848
0.0686 13.0 4888 0.4896 0.9065
0.016 14.0 5264 0.5666 0.8881
0.011 15.0 5640 0.5612 0.8965
0.0019 16.0 6016 0.6453 0.8848
0.0015 17.0 6392 0.5726 0.8948
0.0354 18.0 6768 0.5332 0.9048
0.0037 19.0 7144 0.5726 0.8965
0.0094 20.0 7520 0.5926 0.9032
0.0008 21.0 7896 0.5520 0.8998
0.0004 22.0 8272 0.4436 0.9165
0.0006 23.0 8648 0.6077 0.8965
0.001 24.0 9024 0.6248 0.9132
0.0003 25.0 9400 0.6715 0.8982
0.0035 26.0 9776 0.6641 0.9082
0.0 27.0 10152 0.6982 0.9048
0.0 28.0 10528 0.7269 0.8982
0.0054 29.0 10904 0.6756 0.9098
0.0034 30.0 11280 0.6451 0.9065
0.0 31.0 11656 0.6535 0.9098
0.0 32.0 12032 0.6650 0.9065
0.0 33.0 12408 0.6759 0.9082
0.0 34.0 12784 0.6731 0.9048
0.0 35.0 13160 0.6782 0.9082
0.0001 36.0 13536 0.6755 0.9032
0.0 37.0 13912 0.7594 0.9098
0.0 38.0 14288 0.7065 0.9115
0.0 39.0 14664 0.7005 0.9082
0.0 40.0 15040 0.7058 0.9149
0.0 41.0 15416 0.6924 0.9115
0.0 42.0 15792 0.7078 0.9149
0.0 43.0 16168 0.7156 0.9149
0.0 44.0 16544 0.7204 0.9165
0.0 45.0 16920 0.7358 0.9149
0.003 46.0 17296 0.7278 0.9165
0.0 47.0 17672 0.7349 0.9149
0.0 48.0 18048 0.7414 0.9149
0.0 49.0 18424 0.7464 0.9149
0.0023 50.0 18800 0.7497 0.9132

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2