hkivancoral's picture
End of training
bcb9248
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_base_adamax_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8985024958402662

smids_5x_deit_base_adamax_0001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8969
  • Accuracy: 0.8985

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2012 1.0 375 0.2802 0.8835
0.1424 2.0 750 0.3530 0.8985
0.0484 3.0 1125 0.5841 0.8769
0.0171 4.0 1500 0.5393 0.8968
0.0016 5.0 1875 0.6879 0.8835
0.0133 6.0 2250 0.7421 0.8885
0.0004 7.0 2625 0.7382 0.8869
0.0224 8.0 3000 0.6881 0.8902
0.0004 9.0 3375 0.7760 0.8902
0.0002 10.0 3750 0.7986 0.8852
0.0045 11.0 4125 0.7173 0.8935
0.0002 12.0 4500 0.8875 0.8802
0.0106 13.0 4875 0.8591 0.8918
0.0009 14.0 5250 0.9035 0.8902
0.0101 15.0 5625 0.8626 0.8918
0.0 16.0 6000 0.9182 0.8852
0.0029 17.0 6375 0.7794 0.8952
0.0 18.0 6750 0.7848 0.8935
0.0001 19.0 7125 0.8673 0.8902
0.0 20.0 7500 0.8428 0.8918
0.0 21.0 7875 0.8282 0.8952
0.0 22.0 8250 0.8604 0.8918
0.0 23.0 8625 0.8223 0.8935
0.0 24.0 9000 0.8436 0.8952
0.0 25.0 9375 0.8078 0.8902
0.0 26.0 9750 0.8487 0.8968
0.0 27.0 10125 0.8273 0.8902
0.0 28.0 10500 0.8385 0.8902
0.0 29.0 10875 0.8210 0.8985
0.0 30.0 11250 0.8440 0.8918
0.0029 31.0 11625 0.8614 0.8852
0.0034 32.0 12000 0.8524 0.8935
0.0033 33.0 12375 0.8611 0.8918
0.0 34.0 12750 0.8778 0.8985
0.0 35.0 13125 0.8525 0.8952
0.0 36.0 13500 0.8763 0.8952
0.0 37.0 13875 0.8733 0.9002
0.0 38.0 14250 0.8847 0.8952
0.0 39.0 14625 0.8741 0.8952
0.0027 40.0 15000 0.8864 0.8952
0.0 41.0 15375 0.8807 0.8952
0.0025 42.0 15750 0.8886 0.8952
0.0024 43.0 16125 0.8857 0.8985
0.0024 44.0 16500 0.8867 0.8968
0.0023 45.0 16875 0.8921 0.8985
0.0 46.0 17250 0.8968 0.8985
0.0048 47.0 17625 0.8952 0.8985
0.0 48.0 18000 0.8977 0.8985
0.0023 49.0 18375 0.8974 0.8985
0.0023 50.0 18750 0.8969 0.8985

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2