hkivancoral's picture
End of training
443223c
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.405

smids_3x_deit_tiny_sgd_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1190
  • Accuracy: 0.405

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3567 1.0 225 1.3548 0.3467
1.2325 2.0 450 1.3329 0.345
1.3433 3.0 675 1.3131 0.3467
1.2405 4.0 900 1.2949 0.3467
1.3135 5.0 1125 1.2785 0.3533
1.2715 6.0 1350 1.2636 0.36
1.2599 7.0 1575 1.2502 0.3583
1.2399 8.0 1800 1.2380 0.365
1.2555 9.0 2025 1.2270 0.3667
1.2073 10.0 2250 1.2172 0.38
1.2054 11.0 2475 1.2082 0.3767
1.2574 12.0 2700 1.2001 0.3817
1.1461 13.0 2925 1.1929 0.385
1.1651 14.0 3150 1.1863 0.3883
1.2048 15.0 3375 1.1803 0.39
1.1932 16.0 3600 1.1750 0.395
1.1333 17.0 3825 1.1701 0.3967
1.1551 18.0 4050 1.1656 0.3917
1.1804 19.0 4275 1.1615 0.3933
1.1749 20.0 4500 1.1578 0.39
1.1596 21.0 4725 1.1543 0.39
1.1144 22.0 4950 1.1511 0.39
1.1024 23.0 5175 1.1481 0.395
1.1547 24.0 5400 1.1454 0.3967
1.1295 25.0 5625 1.1429 0.395
1.1235 26.0 5850 1.1405 0.3983
1.0919 27.0 6075 1.1383 0.3983
1.0892 28.0 6300 1.1364 0.4033
1.1395 29.0 6525 1.1345 0.4017
1.1334 30.0 6750 1.1328 0.4
1.0988 31.0 6975 1.1312 0.405
1.1324 32.0 7200 1.1297 0.4067
1.1023 33.0 7425 1.1284 0.41
1.1357 34.0 7650 1.1271 0.4083
1.1037 35.0 7875 1.1259 0.405
1.1207 36.0 8100 1.1249 0.4033
1.1299 37.0 8325 1.1239 0.4033
1.1551 38.0 8550 1.1231 0.405
1.1268 39.0 8775 1.1223 0.4067
1.1415 40.0 9000 1.1216 0.405
1.1269 41.0 9225 1.1210 0.4067
1.1595 42.0 9450 1.1205 0.4067
1.1387 43.0 9675 1.1201 0.4067
1.0676 44.0 9900 1.1198 0.4067
1.1227 45.0 10125 1.1195 0.4067
1.0985 46.0 10350 1.1193 0.4067
1.0755 47.0 10575 1.1191 0.405
1.0965 48.0 10800 1.1190 0.405
1.1228 49.0 11025 1.1190 0.405
1.0829 50.0 11250 1.1190 0.405

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2