hkivancoral's picture
End of training
4556999
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_sgd_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.40266222961730447

smids_3x_deit_tiny_sgd_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1011
  • Accuracy: 0.4027

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2975 1.0 225 1.3313 0.3461
1.3535 2.0 450 1.3098 0.3411
1.364 3.0 675 1.2899 0.3411
1.2928 4.0 900 1.2721 0.3411
1.2627 5.0 1125 1.2559 0.3378
1.2073 6.0 1350 1.2414 0.3461
1.3184 7.0 1575 1.2280 0.3527
1.2058 8.0 1800 1.2162 0.3527
1.2305 9.0 2025 1.2057 0.3511
1.2453 10.0 2250 1.1960 0.3478
1.1822 11.0 2475 1.1875 0.3461
1.1856 12.0 2700 1.1797 0.3561
1.1979 13.0 2925 1.1728 0.3661
1.1589 14.0 3150 1.1665 0.3644
1.1625 15.0 3375 1.1608 0.3677
1.1751 16.0 3600 1.1557 0.3744
1.1846 17.0 3825 1.1510 0.3760
1.1541 18.0 4050 1.1466 0.3744
1.1807 19.0 4275 1.1426 0.3727
1.1744 20.0 4500 1.1389 0.3710
1.1694 21.0 4725 1.1356 0.3710
1.1819 22.0 4950 1.1325 0.3727
1.1574 23.0 5175 1.1297 0.3794
1.159 24.0 5400 1.1270 0.3760
1.1656 25.0 5625 1.1246 0.3760
1.1491 26.0 5850 1.1224 0.3777
1.1877 27.0 6075 1.1202 0.3760
1.1245 28.0 6300 1.1183 0.3810
1.1465 29.0 6525 1.1164 0.3877
1.0989 30.0 6750 1.1147 0.3910
1.1019 31.0 6975 1.1132 0.3927
1.1115 32.0 7200 1.1117 0.3927
1.1193 33.0 7425 1.1103 0.3943
1.1111 34.0 7650 1.1091 0.3960
1.1163 35.0 7875 1.1080 0.3977
1.1433 36.0 8100 1.1069 0.3993
1.0817 37.0 8325 1.1060 0.3993
1.1389 38.0 8550 1.1052 0.3993
1.1196 39.0 8775 1.1044 0.4027
1.1051 40.0 9000 1.1037 0.4043
1.1003 41.0 9225 1.1031 0.4027
1.1259 42.0 9450 1.1026 0.4027
1.1127 43.0 9675 1.1022 0.4027
1.1252 44.0 9900 1.1018 0.4010
1.0665 45.0 10125 1.1016 0.4027
1.1219 46.0 10350 1.1014 0.4027
1.1281 47.0 10575 1.1012 0.4027
1.0847 48.0 10800 1.1011 0.4027
1.1349 49.0 11025 1.1011 0.4027
1.1316 50.0 11250 1.1011 0.4027

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2