hkivancoral's picture
End of training
60ba2dd
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8036605657237936

smids_3x_deit_tiny_rms_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9828
  • Accuracy: 0.8037

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8903 1.0 225 0.8221 0.5707
0.8376 2.0 450 0.7917 0.6023
0.7073 3.0 675 0.7643 0.5790
0.7158 4.0 900 0.7590 0.6506
0.6892 5.0 1125 0.7293 0.6506
0.6685 6.0 1350 0.6489 0.6755
0.606 7.0 1575 0.5908 0.7471
0.6652 8.0 1800 0.5586 0.7537
0.6311 9.0 2025 0.5971 0.7504
0.5645 10.0 2250 0.5700 0.7571
0.6575 11.0 2475 0.6329 0.7338
0.5727 12.0 2700 0.5598 0.7521
0.5704 13.0 2925 0.5359 0.7754
0.5215 14.0 3150 0.5587 0.7571
0.583 15.0 3375 0.5430 0.7787
0.5848 16.0 3600 0.5789 0.7255
0.5726 17.0 3825 0.5236 0.7854
0.489 18.0 4050 0.4992 0.8003
0.4753 19.0 4275 0.5863 0.7621
0.5263 20.0 4500 0.5219 0.7704
0.4735 21.0 4725 0.4900 0.7970
0.5712 22.0 4950 0.5240 0.8070
0.5071 23.0 5175 0.5142 0.7854
0.5079 24.0 5400 0.5416 0.7887
0.4923 25.0 5625 0.5063 0.8053
0.3927 26.0 5850 0.5633 0.7870
0.3745 27.0 6075 0.6375 0.7621
0.3879 28.0 6300 0.5787 0.7787
0.3817 29.0 6525 0.5796 0.7887
0.3478 30.0 6750 0.5474 0.8070
0.3866 31.0 6975 0.5776 0.7920
0.3993 32.0 7200 0.5703 0.8103
0.2926 33.0 7425 0.6089 0.7970
0.2772 34.0 7650 0.6185 0.8020
0.2754 35.0 7875 0.6777 0.7854
0.2402 36.0 8100 0.7422 0.7870
0.2412 37.0 8325 0.7873 0.7754
0.2165 38.0 8550 0.8318 0.8070
0.1829 39.0 8775 0.8522 0.7920
0.1669 40.0 9000 0.9913 0.7903
0.135 41.0 9225 1.0029 0.8003
0.1443 42.0 9450 1.0999 0.7987
0.0893 43.0 9675 1.2541 0.8020
0.0533 44.0 9900 1.3854 0.8003
0.065 45.0 10125 1.6713 0.7754
0.0332 46.0 10350 1.6089 0.8003
0.0177 47.0 10575 1.8304 0.7920
0.0017 48.0 10800 1.9277 0.7937
0.0154 49.0 11025 1.9904 0.8053
0.0079 50.0 11250 1.9828 0.8037

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2