hkivancoral's picture
End of training
a635980
|
raw
history blame
4.86 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_rms_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8885191347753744

smids_3x_deit_tiny_rms_0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0507
  • Accuracy: 0.8885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3654 1.0 225 0.3820 0.8419
0.2564 2.0 450 0.3888 0.8502
0.2078 3.0 675 0.3453 0.8669
0.1779 4.0 900 0.3342 0.8785
0.0923 5.0 1125 0.4468 0.8702
0.1133 6.0 1350 0.4712 0.8885
0.1075 7.0 1575 0.5119 0.8785
0.0546 8.0 1800 0.5949 0.8852
0.107 9.0 2025 0.6816 0.8619
0.0417 10.0 2250 0.6436 0.8918
0.0434 11.0 2475 0.6287 0.8918
0.0459 12.0 2700 0.7263 0.8802
0.01 13.0 2925 1.0463 0.8586
0.0718 14.0 3150 0.7632 0.8686
0.0139 15.0 3375 0.8074 0.8752
0.0175 16.0 3600 0.9064 0.8819
0.0398 17.0 3825 0.8900 0.8569
0.0628 18.0 4050 0.8666 0.8769
0.0021 19.0 4275 1.0191 0.8636
0.0486 20.0 4500 0.9743 0.8619
0.0363 21.0 4725 0.8658 0.8636
0.0187 22.0 4950 0.8042 0.8802
0.061 23.0 5175 0.9235 0.8735
0.0107 24.0 5400 0.9113 0.8752
0.0112 25.0 5625 1.0185 0.8785
0.0001 26.0 5850 0.9687 0.8636
0.0001 27.0 6075 0.8990 0.8686
0.0 28.0 6300 0.8022 0.8735
0.0001 29.0 6525 0.9932 0.8752
0.0056 30.0 6750 0.9438 0.8785
0.0025 31.0 6975 0.8626 0.8719
0.0001 32.0 7200 0.8253 0.8835
0.0037 33.0 7425 0.8896 0.8952
0.0001 34.0 7650 0.8932 0.8785
0.0037 35.0 7875 0.9625 0.8885
0.0037 36.0 8100 0.9054 0.8869
0.0 37.0 8325 0.9088 0.8802
0.0 38.0 8550 1.0141 0.8719
0.0067 39.0 8775 1.0333 0.8902
0.0 40.0 9000 0.9904 0.8802
0.0007 41.0 9225 1.0454 0.8802
0.0 42.0 9450 1.0162 0.8835
0.0 43.0 9675 1.0365 0.8819
0.0 44.0 9900 1.0455 0.8819
0.0 45.0 10125 1.0251 0.8852
0.0 46.0 10350 1.0400 0.8902
0.0 47.0 10575 1.0402 0.8869
0.0 48.0 10800 1.0455 0.8852
0.0025 49.0 11025 1.0501 0.8885
0.0025 50.0 11250 1.0507 0.8885

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2