hkivancoral's picture
End of training
4ccc0e5
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8752079866888519

smids_3x_deit_tiny_rms_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0668
  • Accuracy: 0.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2993 1.0 225 0.3110 0.8719
0.214 2.0 450 0.3099 0.8719
0.1117 3.0 675 0.3255 0.8835
0.1732 4.0 900 0.3969 0.8636
0.1001 5.0 1125 0.4203 0.8735
0.0568 6.0 1350 0.5015 0.8735
0.0354 7.0 1575 0.5359 0.8769
0.0128 8.0 1800 0.6487 0.8769
0.012 9.0 2025 0.7872 0.8552
0.0123 10.0 2250 0.8404 0.8752
0.0004 11.0 2475 0.8481 0.8652
0.0319 12.0 2700 0.9253 0.8686
0.0001 13.0 2925 0.9570 0.8636
0.0029 14.0 3150 0.9176 0.8702
0.0009 15.0 3375 1.0326 0.8785
0.0207 16.0 3600 1.0323 0.8719
0.0113 17.0 3825 1.0675 0.8686
0.0006 18.0 4050 1.0013 0.8769
0.0 19.0 4275 1.1724 0.8669
0.0 20.0 4500 0.9929 0.8735
0.0002 21.0 4725 0.9953 0.8719
0.0 22.0 4950 1.1132 0.8735
0.0425 23.0 5175 1.0471 0.8686
0.0 24.0 5400 1.1403 0.8652
0.0141 25.0 5625 1.1287 0.8619
0.0 26.0 5850 0.9874 0.8785
0.0 27.0 6075 1.0105 0.8752
0.0 28.0 6300 1.0130 0.8802
0.0 29.0 6525 1.0721 0.8652
0.0053 30.0 6750 1.0713 0.8819
0.0 31.0 6975 1.0241 0.8835
0.0 32.0 7200 1.0643 0.8869
0.0 33.0 7425 1.0320 0.8669
0.0 34.0 7650 1.0424 0.8802
0.0 35.0 7875 1.0176 0.8802
0.0044 36.0 8100 0.9778 0.8785
0.0 37.0 8325 0.9990 0.8819
0.0 38.0 8550 1.0176 0.8752
0.0047 39.0 8775 1.0819 0.8719
0.0 40.0 9000 1.0393 0.8735
0.0 41.0 9225 1.0424 0.8735
0.0 42.0 9450 1.0459 0.8702
0.0 43.0 9675 1.0528 0.8752
0.0 44.0 9900 1.0545 0.8769
0.0 45.0 10125 1.0566 0.8785
0.0 46.0 10350 1.0564 0.8769
0.0 47.0 10575 1.0599 0.8785
0.0 48.0 10800 1.0618 0.8785
0.002 49.0 11025 1.0652 0.8752
0.002 50.0 11250 1.0668 0.8752

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2