hkivancoral's picture
End of training
2eb795b
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.89

smids_3x_deit_tiny_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9334
  • Accuracy: 0.89

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6273 1.0 225 0.4733 0.805
0.2977 2.0 450 0.3448 0.8733
0.3197 3.0 675 0.3620 0.88
0.2909 4.0 900 0.4019 0.8367
0.1808 5.0 1125 0.3972 0.8617
0.2005 6.0 1350 0.4622 0.8483
0.1408 7.0 1575 0.4696 0.8717
0.1502 8.0 1800 0.4332 0.8633
0.2129 9.0 2025 0.3925 0.8833
0.114 10.0 2250 0.4888 0.8733
0.1195 11.0 2475 0.4884 0.8717
0.1124 12.0 2700 0.4439 0.8733
0.0652 13.0 2925 0.6058 0.8633
0.0425 14.0 3150 0.5627 0.875
0.039 15.0 3375 0.5971 0.875
0.0795 16.0 3600 0.6169 0.8733
0.0453 17.0 3825 0.6835 0.875
0.0066 18.0 4050 0.7361 0.8783
0.1031 19.0 4275 0.7941 0.8717
0.0061 20.0 4500 0.7090 0.8733
0.0198 21.0 4725 0.7250 0.8783
0.0155 22.0 4950 0.7045 0.8917
0.023 23.0 5175 0.8046 0.8817
0.057 24.0 5400 0.7359 0.8817
0.0134 25.0 5625 0.7403 0.8867
0.0001 26.0 5850 0.7361 0.895
0.0011 27.0 6075 0.7945 0.8733
0.0014 28.0 6300 0.6928 0.8983
0.0133 29.0 6525 0.6789 0.895
0.0002 30.0 6750 0.7451 0.8967
0.0001 31.0 6975 0.7847 0.8867
0.0 32.0 7200 0.7580 0.8917
0.0043 33.0 7425 0.8908 0.8833
0.0 34.0 7650 0.7939 0.89
0.0034 35.0 7875 0.8753 0.8933
0.0 36.0 8100 0.8470 0.8867
0.0046 37.0 8325 0.9037 0.8867
0.0001 38.0 8550 0.8793 0.89
0.0 39.0 8775 0.8702 0.8917
0.0 40.0 9000 0.8835 0.8883
0.0 41.0 9225 0.9101 0.8883
0.0 42.0 9450 0.9070 0.8933
0.0037 43.0 9675 0.9025 0.8933
0.0 44.0 9900 0.9038 0.89
0.0 45.0 10125 0.9112 0.89
0.0 46.0 10350 0.9228 0.89
0.0 47.0 10575 0.9243 0.89
0.0 48.0 10800 0.9283 0.89
0.0 49.0 11025 0.9314 0.89
0.0 50.0 11250 0.9334 0.89

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2