metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_tiny_adamax_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.89
smids_3x_deit_tiny_adamax_001_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9334
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6273 | 1.0 | 225 | 0.4733 | 0.805 |
0.2977 | 2.0 | 450 | 0.3448 | 0.8733 |
0.3197 | 3.0 | 675 | 0.3620 | 0.88 |
0.2909 | 4.0 | 900 | 0.4019 | 0.8367 |
0.1808 | 5.0 | 1125 | 0.3972 | 0.8617 |
0.2005 | 6.0 | 1350 | 0.4622 | 0.8483 |
0.1408 | 7.0 | 1575 | 0.4696 | 0.8717 |
0.1502 | 8.0 | 1800 | 0.4332 | 0.8633 |
0.2129 | 9.0 | 2025 | 0.3925 | 0.8833 |
0.114 | 10.0 | 2250 | 0.4888 | 0.8733 |
0.1195 | 11.0 | 2475 | 0.4884 | 0.8717 |
0.1124 | 12.0 | 2700 | 0.4439 | 0.8733 |
0.0652 | 13.0 | 2925 | 0.6058 | 0.8633 |
0.0425 | 14.0 | 3150 | 0.5627 | 0.875 |
0.039 | 15.0 | 3375 | 0.5971 | 0.875 |
0.0795 | 16.0 | 3600 | 0.6169 | 0.8733 |
0.0453 | 17.0 | 3825 | 0.6835 | 0.875 |
0.0066 | 18.0 | 4050 | 0.7361 | 0.8783 |
0.1031 | 19.0 | 4275 | 0.7941 | 0.8717 |
0.0061 | 20.0 | 4500 | 0.7090 | 0.8733 |
0.0198 | 21.0 | 4725 | 0.7250 | 0.8783 |
0.0155 | 22.0 | 4950 | 0.7045 | 0.8917 |
0.023 | 23.0 | 5175 | 0.8046 | 0.8817 |
0.057 | 24.0 | 5400 | 0.7359 | 0.8817 |
0.0134 | 25.0 | 5625 | 0.7403 | 0.8867 |
0.0001 | 26.0 | 5850 | 0.7361 | 0.895 |
0.0011 | 27.0 | 6075 | 0.7945 | 0.8733 |
0.0014 | 28.0 | 6300 | 0.6928 | 0.8983 |
0.0133 | 29.0 | 6525 | 0.6789 | 0.895 |
0.0002 | 30.0 | 6750 | 0.7451 | 0.8967 |
0.0001 | 31.0 | 6975 | 0.7847 | 0.8867 |
0.0 | 32.0 | 7200 | 0.7580 | 0.8917 |
0.0043 | 33.0 | 7425 | 0.8908 | 0.8833 |
0.0 | 34.0 | 7650 | 0.7939 | 0.89 |
0.0034 | 35.0 | 7875 | 0.8753 | 0.8933 |
0.0 | 36.0 | 8100 | 0.8470 | 0.8867 |
0.0046 | 37.0 | 8325 | 0.9037 | 0.8867 |
0.0001 | 38.0 | 8550 | 0.8793 | 0.89 |
0.0 | 39.0 | 8775 | 0.8702 | 0.8917 |
0.0 | 40.0 | 9000 | 0.8835 | 0.8883 |
0.0 | 41.0 | 9225 | 0.9101 | 0.8883 |
0.0 | 42.0 | 9450 | 0.9070 | 0.8933 |
0.0037 | 43.0 | 9675 | 0.9025 | 0.8933 |
0.0 | 44.0 | 9900 | 0.9038 | 0.89 |
0.0 | 45.0 | 10125 | 0.9112 | 0.89 |
0.0 | 46.0 | 10350 | 0.9228 | 0.89 |
0.0 | 47.0 | 10575 | 0.9243 | 0.89 |
0.0 | 48.0 | 10800 | 0.9283 | 0.89 |
0.0 | 49.0 | 11025 | 0.9314 | 0.89 |
0.0 | 50.0 | 11250 | 0.9334 | 0.89 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2