hkivancoral's picture
End of training
ab23ea9
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8933333333333333

smids_3x_deit_tiny_adamax_0001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8810
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3187 1.0 225 0.2926 0.8683
0.1675 2.0 450 0.2434 0.9083
0.148 3.0 675 0.3249 0.8883
0.0849 4.0 900 0.2613 0.91
0.0858 5.0 1125 0.4160 0.895
0.0448 6.0 1350 0.5146 0.8833
0.0473 7.0 1575 0.6012 0.8833
0.0246 8.0 1800 0.5599 0.89
0.0437 9.0 2025 0.6206 0.8933
0.0184 10.0 2250 0.6714 0.9017
0.0009 11.0 2475 0.6631 0.9083
0.0431 12.0 2700 0.7764 0.8983
0.0005 13.0 2925 0.6164 0.9033
0.0002 14.0 3150 0.6308 0.9017
0.0025 15.0 3375 0.7289 0.8983
0.0001 16.0 3600 0.6634 0.905
0.0 17.0 3825 0.7636 0.9033
0.0233 18.0 4050 0.7494 0.905
0.027 19.0 4275 0.8179 0.8917
0.0 20.0 4500 0.8300 0.895
0.0 21.0 4725 0.8262 0.8967
0.0 22.0 4950 0.8472 0.8917
0.0 23.0 5175 0.7368 0.9067
0.0091 24.0 5400 0.7922 0.8983
0.0 25.0 5625 0.8707 0.9
0.0 26.0 5850 0.7645 0.9017
0.0 27.0 6075 0.8363 0.8983
0.0 28.0 6300 0.8125 0.905
0.0076 29.0 6525 0.7853 0.9067
0.0 30.0 6750 0.8267 0.8967
0.0 31.0 6975 0.8018 0.905
0.0 32.0 7200 0.8256 0.9
0.0059 33.0 7425 0.8776 0.8967
0.0 34.0 7650 0.8060 0.9
0.0032 35.0 7875 0.8635 0.9
0.0 36.0 8100 0.8389 0.895
0.005 37.0 8325 0.8643 0.895
0.0 38.0 8550 0.8458 0.8983
0.0 39.0 8775 0.8735 0.895
0.0 40.0 9000 0.8584 0.895
0.0 41.0 9225 0.8812 0.895
0.0 42.0 9450 0.8710 0.895
0.0032 43.0 9675 0.8774 0.895
0.0 44.0 9900 0.8731 0.895
0.0 45.0 10125 0.8725 0.8967
0.0 46.0 10350 0.8786 0.895
0.0 47.0 10575 0.8795 0.895
0.0 48.0 10800 0.8801 0.895
0.0 49.0 11025 0.8803 0.8933
0.0 50.0 11250 0.8810 0.8933

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2