hkivancoral's picture
End of training
d874f00
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.875

smids_3x_deit_tiny_adamax_0001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3554
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3155 1.0 225 0.3767 0.855
0.1407 2.0 450 0.3968 0.87
0.0909 3.0 675 0.5151 0.8617
0.1097 4.0 900 0.4932 0.8633
0.0371 5.0 1125 0.6275 0.8683
0.0101 6.0 1350 0.7429 0.8633
0.0391 7.0 1575 0.8418 0.865
0.0077 8.0 1800 0.8293 0.8767
0.0687 9.0 2025 0.9529 0.8667
0.0191 10.0 2250 1.0880 0.8633
0.0325 11.0 2475 1.1276 0.8583
0.0003 12.0 2700 1.0880 0.8583
0.0043 13.0 2925 1.1462 0.8717
0.0003 14.0 3150 1.2942 0.8467
0.04 15.0 3375 1.1259 0.86
0.0007 16.0 3600 1.1878 0.86
0.0001 17.0 3825 1.2005 0.8683
0.0003 18.0 4050 1.1961 0.8667
0.0 19.0 4275 1.1734 0.8717
0.0002 20.0 4500 1.2441 0.865
0.0 21.0 4725 1.2631 0.87
0.0 22.0 4950 1.1604 0.8733
0.0 23.0 5175 1.1940 0.8683
0.0 24.0 5400 1.2754 0.8683
0.0 25.0 5625 1.2790 0.8617
0.0 26.0 5850 1.2664 0.8733
0.0 27.0 6075 1.2877 0.875
0.0 28.0 6300 1.2788 0.88
0.0 29.0 6525 1.2589 0.8783
0.0 30.0 6750 1.2671 0.8783
0.0 31.0 6975 1.2750 0.8783
0.0 32.0 7200 1.2783 0.875
0.0 33.0 7425 1.2973 0.8733
0.0 34.0 7650 1.3104 0.8717
0.0 35.0 7875 1.3108 0.8717
0.0 36.0 8100 1.3246 0.8717
0.0 37.0 8325 1.3217 0.87
0.0 38.0 8550 1.3349 0.8733
0.0 39.0 8775 1.3355 0.8733
0.0 40.0 9000 1.3337 0.8733
0.0 41.0 9225 1.3326 0.875
0.0036 42.0 9450 1.3380 0.8733
0.0 43.0 9675 1.3430 0.875
0.0032 44.0 9900 1.3445 0.8733
0.0 45.0 10125 1.3492 0.875
0.0 46.0 10350 1.3514 0.875
0.0 47.0 10575 1.3535 0.875
0.0 48.0 10800 1.3548 0.875
0.0 49.0 11025 1.3543 0.875
0.0 50.0 11250 1.3554 0.875

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2