hkivancoral's picture
End of training
faa7a0f
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_base_rms_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8866666666666667

smids_3x_deit_base_rms_0001_fold4

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2420
  • Accuracy: 0.8867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3339 1.0 225 0.3477 0.8767
0.1864 2.0 450 0.4551 0.875
0.1083 3.0 675 0.7108 0.8417
0.1229 4.0 900 0.4781 0.8883
0.0535 5.0 1125 0.6232 0.8733
0.0735 6.0 1350 0.5812 0.88
0.0369 7.0 1575 0.6859 0.8667
0.055 8.0 1800 0.7382 0.8417
0.0533 9.0 2025 0.7001 0.8833
0.0337 10.0 2250 0.7953 0.855
0.0039 11.0 2475 0.6932 0.8783
0.0367 12.0 2700 0.7006 0.8733
0.0008 13.0 2925 0.6228 0.895
0.0352 14.0 3150 0.6483 0.88
0.0536 15.0 3375 0.7338 0.8733
0.0282 16.0 3600 0.7455 0.8667
0.0418 17.0 3825 0.6314 0.8833
0.0045 18.0 4050 0.8581 0.8833
0.0013 19.0 4275 0.8791 0.8717
0.0236 20.0 4500 0.8293 0.8733
0.0003 21.0 4725 0.9177 0.87
0.0214 22.0 4950 0.9227 0.8633
0.0034 23.0 5175 0.7968 0.8867
0.0319 24.0 5400 0.8643 0.885
0.0068 25.0 5625 0.8481 0.88
0.0008 26.0 5850 1.0685 0.8733
0.0 27.0 6075 0.9795 0.88
0.016 28.0 6300 0.9377 0.87
0.0001 29.0 6525 1.0537 0.855
0.0 30.0 6750 1.0268 0.865
0.0184 31.0 6975 0.8036 0.8733
0.0 32.0 7200 0.9837 0.88
0.0 33.0 7425 0.9530 0.8917
0.0 34.0 7650 1.0294 0.8883
0.0 35.0 7875 1.0787 0.8817
0.0 36.0 8100 1.0515 0.885
0.0 37.0 8325 1.0565 0.8867
0.0 38.0 8550 1.0716 0.89
0.0 39.0 8775 1.0979 0.885
0.0 40.0 9000 1.1315 0.8867
0.0 41.0 9225 1.1955 0.8867
0.0034 42.0 9450 1.1923 0.8933
0.0 43.0 9675 1.1858 0.8917
0.0029 44.0 9900 1.2299 0.89
0.0 45.0 10125 1.2340 0.89
0.0 46.0 10350 1.2528 0.885
0.0 47.0 10575 1.2511 0.8867
0.0 48.0 10800 1.2410 0.8867
0.0 49.0 11025 1.2401 0.8867
0.0 50.0 11250 1.2420 0.8867

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2