hkivancoral's picture
End of training
51d99ca
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5916666666666667

smids_1x_deit_tiny_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8882
  • Accuracy: 0.5917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2279 1.0 75 1.2828 0.36
1.1801 2.0 150 1.2204 0.3717
1.1425 3.0 225 1.1764 0.3733
1.1496 4.0 300 1.1467 0.3817
1.0862 5.0 375 1.1259 0.39
1.1317 6.0 450 1.1103 0.3983
1.0711 7.0 525 1.0972 0.4083
1.0717 8.0 600 1.0858 0.4167
1.0458 9.0 675 1.0754 0.42
1.0711 10.0 750 1.0656 0.425
1.0389 11.0 825 1.0563 0.4383
1.0272 12.0 900 1.0476 0.4467
1.0495 13.0 975 1.0393 0.4517
1.0448 14.0 1050 1.0308 0.4533
1.0339 15.0 1125 1.0229 0.4583
0.9744 16.0 1200 1.0150 0.4617
0.9857 17.0 1275 1.0069 0.47
1.0108 18.0 1350 0.9993 0.4717
0.9584 19.0 1425 0.9919 0.4717
0.9977 20.0 1500 0.9844 0.485
0.9787 21.0 1575 0.9775 0.49
0.9724 22.0 1650 0.9707 0.5067
0.9219 23.0 1725 0.9645 0.515
0.923 24.0 1800 0.9585 0.525
0.9224 25.0 1875 0.9527 0.5317
0.9312 26.0 1950 0.9470 0.5417
0.9161 27.0 2025 0.9417 0.5433
0.9574 28.0 2100 0.9369 0.5467
0.9255 29.0 2175 0.9322 0.5517
0.9146 30.0 2250 0.9278 0.555
0.9155 31.0 2325 0.9238 0.5617
0.856 32.0 2400 0.9200 0.565
0.9504 33.0 2475 0.9164 0.5717
0.9096 34.0 2550 0.9130 0.5783
0.8983 35.0 2625 0.9100 0.5817
0.8589 36.0 2700 0.9071 0.585
0.8916 37.0 2775 0.9044 0.5817
0.8984 38.0 2850 0.9020 0.585
0.8824 39.0 2925 0.8998 0.5867
0.8736 40.0 3000 0.8977 0.5867
0.8723 41.0 3075 0.8958 0.5883
0.8965 42.0 3150 0.8942 0.59
0.8854 43.0 3225 0.8928 0.59
0.8622 44.0 3300 0.8915 0.5917
0.8601 45.0 3375 0.8905 0.5917
0.8904 46.0 3450 0.8896 0.5917
0.8654 47.0 3525 0.8890 0.5917
0.8638 48.0 3600 0.8885 0.5917
0.8282 49.0 3675 0.8883 0.5917
0.8485 50.0 3750 0.8882 0.5917

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0