hkivancoral's picture
End of training
d0a6439
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.38898163606010017

smids_1x_deit_tiny_sgd_00001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1750
  • Accuracy: 0.3890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3532 1.0 76 1.3243 0.3506
1.4232 2.0 152 1.3155 0.3489
1.3221 3.0 228 1.3073 0.3489
1.3312 4.0 304 1.2992 0.3489
1.2834 5.0 380 1.2918 0.3539
1.3512 6.0 456 1.2848 0.3573
1.3029 7.0 532 1.2778 0.3573
1.3216 8.0 608 1.2712 0.3606
1.2731 9.0 684 1.2652 0.3656
1.2932 10.0 760 1.2593 0.3639
1.3065 11.0 836 1.2537 0.3606
1.2874 12.0 912 1.2484 0.3606
1.2669 13.0 988 1.2434 0.3623
1.2861 14.0 1064 1.2386 0.3639
1.3203 15.0 1140 1.2340 0.3639
1.3343 16.0 1216 1.2296 0.3639
1.3239 17.0 1292 1.2256 0.3656
1.2639 18.0 1368 1.2217 0.3639
1.2169 19.0 1444 1.2180 0.3673
1.1959 20.0 1520 1.2146 0.3689
1.2012 21.0 1596 1.2114 0.3723
1.1569 22.0 1672 1.2083 0.3706
1.2377 23.0 1748 1.2054 0.3656
1.2417 24.0 1824 1.2027 0.3673
1.2459 25.0 1900 1.2001 0.3689
1.2355 26.0 1976 1.1977 0.3673
1.2821 27.0 2052 1.1955 0.3656
1.2546 28.0 2128 1.1935 0.3706
1.2602 29.0 2204 1.1915 0.3689
1.1654 30.0 2280 1.1896 0.3723
1.2138 31.0 2356 1.1879 0.3740
1.2289 32.0 2432 1.1863 0.3756
1.1744 33.0 2508 1.1849 0.3756
1.2018 34.0 2584 1.1835 0.3756
1.2411 35.0 2660 1.1823 0.3773
1.2021 36.0 2736 1.1812 0.3840
1.172 37.0 2812 1.1802 0.3840
1.2015 38.0 2888 1.1792 0.3840
1.2305 39.0 2964 1.1784 0.3840
1.1165 40.0 3040 1.1777 0.3840
1.2641 41.0 3116 1.1771 0.3856
1.2228 42.0 3192 1.1765 0.3856
1.1905 43.0 3268 1.1761 0.3856
1.1893 44.0 3344 1.1757 0.3873
1.2905 45.0 3420 1.1755 0.3873
1.194 46.0 3496 1.1753 0.3873
1.1805 47.0 3572 1.1751 0.3873
1.1703 48.0 3648 1.1750 0.3873
1.2028 49.0 3724 1.1750 0.3890
1.2474 50.0 3800 1.1750 0.3890

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0