metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_sgd_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.38898163606010017
smids_1x_deit_tiny_sgd_00001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1750
- Accuracy: 0.3890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3532 | 1.0 | 76 | 1.3243 | 0.3506 |
1.4232 | 2.0 | 152 | 1.3155 | 0.3489 |
1.3221 | 3.0 | 228 | 1.3073 | 0.3489 |
1.3312 | 4.0 | 304 | 1.2992 | 0.3489 |
1.2834 | 5.0 | 380 | 1.2918 | 0.3539 |
1.3512 | 6.0 | 456 | 1.2848 | 0.3573 |
1.3029 | 7.0 | 532 | 1.2778 | 0.3573 |
1.3216 | 8.0 | 608 | 1.2712 | 0.3606 |
1.2731 | 9.0 | 684 | 1.2652 | 0.3656 |
1.2932 | 10.0 | 760 | 1.2593 | 0.3639 |
1.3065 | 11.0 | 836 | 1.2537 | 0.3606 |
1.2874 | 12.0 | 912 | 1.2484 | 0.3606 |
1.2669 | 13.0 | 988 | 1.2434 | 0.3623 |
1.2861 | 14.0 | 1064 | 1.2386 | 0.3639 |
1.3203 | 15.0 | 1140 | 1.2340 | 0.3639 |
1.3343 | 16.0 | 1216 | 1.2296 | 0.3639 |
1.3239 | 17.0 | 1292 | 1.2256 | 0.3656 |
1.2639 | 18.0 | 1368 | 1.2217 | 0.3639 |
1.2169 | 19.0 | 1444 | 1.2180 | 0.3673 |
1.1959 | 20.0 | 1520 | 1.2146 | 0.3689 |
1.2012 | 21.0 | 1596 | 1.2114 | 0.3723 |
1.1569 | 22.0 | 1672 | 1.2083 | 0.3706 |
1.2377 | 23.0 | 1748 | 1.2054 | 0.3656 |
1.2417 | 24.0 | 1824 | 1.2027 | 0.3673 |
1.2459 | 25.0 | 1900 | 1.2001 | 0.3689 |
1.2355 | 26.0 | 1976 | 1.1977 | 0.3673 |
1.2821 | 27.0 | 2052 | 1.1955 | 0.3656 |
1.2546 | 28.0 | 2128 | 1.1935 | 0.3706 |
1.2602 | 29.0 | 2204 | 1.1915 | 0.3689 |
1.1654 | 30.0 | 2280 | 1.1896 | 0.3723 |
1.2138 | 31.0 | 2356 | 1.1879 | 0.3740 |
1.2289 | 32.0 | 2432 | 1.1863 | 0.3756 |
1.1744 | 33.0 | 2508 | 1.1849 | 0.3756 |
1.2018 | 34.0 | 2584 | 1.1835 | 0.3756 |
1.2411 | 35.0 | 2660 | 1.1823 | 0.3773 |
1.2021 | 36.0 | 2736 | 1.1812 | 0.3840 |
1.172 | 37.0 | 2812 | 1.1802 | 0.3840 |
1.2015 | 38.0 | 2888 | 1.1792 | 0.3840 |
1.2305 | 39.0 | 2964 | 1.1784 | 0.3840 |
1.1165 | 40.0 | 3040 | 1.1777 | 0.3840 |
1.2641 | 41.0 | 3116 | 1.1771 | 0.3856 |
1.2228 | 42.0 | 3192 | 1.1765 | 0.3856 |
1.1905 | 43.0 | 3268 | 1.1761 | 0.3856 |
1.1893 | 44.0 | 3344 | 1.1757 | 0.3873 |
1.2905 | 45.0 | 3420 | 1.1755 | 0.3873 |
1.194 | 46.0 | 3496 | 1.1753 | 0.3873 |
1.1805 | 47.0 | 3572 | 1.1751 | 0.3873 |
1.1703 | 48.0 | 3648 | 1.1750 | 0.3873 |
1.2028 | 49.0 | 3724 | 1.1750 | 0.3890 |
1.2474 | 50.0 | 3800 | 1.1750 | 0.3890 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0