hkivancoral's picture
End of training
cc20d19
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8516666666666667

smids_1x_deit_tiny_rms_0001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2046
  • Accuracy: 0.8517

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7851 1.0 75 0.8659 0.64
0.6518 2.0 150 0.7541 0.6467
0.4507 3.0 225 0.6126 0.755
0.4597 4.0 300 0.4698 0.805
0.3528 5.0 375 0.4309 0.835
0.2717 6.0 450 0.4110 0.8517
0.2211 7.0 525 0.5132 0.8283
0.1873 8.0 600 0.5255 0.835
0.1509 9.0 675 0.5409 0.85
0.06 10.0 750 0.7466 0.8333
0.1297 11.0 825 0.8027 0.835
0.0789 12.0 900 0.7518 0.8417
0.1522 13.0 975 0.7901 0.8533
0.0628 14.0 1050 0.8326 0.845
0.0732 15.0 1125 0.9433 0.8317
0.0276 16.0 1200 0.9028 0.845
0.0402 17.0 1275 0.8882 0.8617
0.0561 18.0 1350 0.9516 0.8367
0.0072 19.0 1425 1.0341 0.8467
0.0251 20.0 1500 1.0436 0.8433
0.0171 21.0 1575 0.8887 0.855
0.0141 22.0 1650 0.9265 0.8517
0.0297 23.0 1725 1.1359 0.8383
0.0008 24.0 1800 1.0337 0.8567
0.0322 25.0 1875 0.8913 0.87
0.0416 26.0 1950 0.9175 0.84
0.0268 27.0 2025 0.9551 0.86
0.0237 28.0 2100 1.0150 0.8533
0.0252 29.0 2175 0.8872 0.8617
0.0035 30.0 2250 0.9489 0.8633
0.0155 31.0 2325 1.0473 0.8417
0.0007 32.0 2400 0.9648 0.8533
0.0102 33.0 2475 1.0603 0.8517
0.0 34.0 2550 1.0445 0.8533
0.0057 35.0 2625 1.0369 0.8467
0.0 36.0 2700 1.0577 0.8517
0.004 37.0 2775 1.0782 0.845
0.0033 38.0 2850 1.1658 0.8433
0.0001 39.0 2925 1.0942 0.8533
0.0 40.0 3000 1.1718 0.8467
0.0038 41.0 3075 1.1726 0.855
0.0 42.0 3150 1.1472 0.85
0.008 43.0 3225 1.1850 0.8517
0.0008 44.0 3300 1.1576 0.845
0.0022 45.0 3375 1.1935 0.855
0.0 46.0 3450 1.1973 0.8533
0.0056 47.0 3525 1.2032 0.8533
0.0051 48.0 3600 1.2041 0.8533
0.0 49.0 3675 1.2053 0.8517
0.0043 50.0 3750 1.2046 0.8517

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0