hkivancoral's picture
End of training
4dc1a4d
|
raw
history blame
4.81 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_rms_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8916666666666667

smids_1x_deit_tiny_rms_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7866
  • Accuracy: 0.8917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4569 1.0 75 0.3524 0.8733
0.257 2.0 150 0.3177 0.8783
0.228 3.0 225 0.2830 0.895
0.1874 4.0 300 0.2625 0.9133
0.0988 5.0 375 0.3112 0.8867
0.0547 6.0 450 0.3480 0.895
0.0671 7.0 525 0.4401 0.8783
0.0314 8.0 600 0.4835 0.8917
0.0373 9.0 675 0.4879 0.8983
0.007 10.0 750 0.5903 0.895
0.0283 11.0 825 0.5783 0.8867
0.0151 12.0 900 0.7372 0.8833
0.0012 13.0 975 0.6965 0.8783
0.0175 14.0 1050 0.6546 0.89
0.0013 15.0 1125 0.7058 0.8783
0.0001 16.0 1200 0.6811 0.8917
0.0007 17.0 1275 0.7469 0.8967
0.0153 18.0 1350 0.6408 0.8917
0.0082 19.0 1425 0.8396 0.8783
0.0026 20.0 1500 0.8283 0.8883
0.0001 21.0 1575 0.7596 0.89
0.0037 22.0 1650 0.8137 0.875
0.007 23.0 1725 0.7276 0.8833
0.0 24.0 1800 0.6779 0.9
0.0001 25.0 1875 0.7204 0.895
0.0081 26.0 1950 0.7595 0.8883
0.0 27.0 2025 0.7620 0.895
0.0 28.0 2100 0.7575 0.8867
0.0001 29.0 2175 0.7827 0.89
0.0 30.0 2250 0.7351 0.8917
0.0 31.0 2325 0.7715 0.89
0.0 32.0 2400 0.7652 0.8917
0.0 33.0 2475 0.7881 0.89
0.0066 34.0 2550 0.7810 0.89
0.0102 35.0 2625 0.8490 0.89
0.0026 36.0 2700 0.7973 0.885
0.0016 37.0 2775 0.7751 0.8983
0.0 38.0 2850 0.7861 0.8933
0.0 39.0 2925 0.7652 0.8917
0.0 40.0 3000 0.7874 0.8917
0.0 41.0 3075 0.7876 0.8883
0.0033 42.0 3150 0.7858 0.8917
0.0029 43.0 3225 0.7835 0.8917
0.0 44.0 3300 0.7876 0.8917
0.0023 45.0 3375 0.7887 0.8917
0.0023 46.0 3450 0.7887 0.8917
0.0053 47.0 3525 0.7882 0.8917
0.0 48.0 3600 0.7869 0.8917
0.0 49.0 3675 0.7873 0.8917
0.0047 50.0 3750 0.7866 0.8917

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0