hkivancoral's picture
End of training
979bbbd
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_rms_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8631051752921536

smids_1x_deit_tiny_rms_00001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8877
  • Accuracy: 0.8631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4093 1.0 76 0.4066 0.8264
0.3822 2.0 152 0.3553 0.8614
0.1979 3.0 228 0.3399 0.8631
0.1648 4.0 304 0.3252 0.8815
0.0965 5.0 380 0.3551 0.8531
0.072 6.0 456 0.4036 0.8631
0.0292 7.0 532 0.4208 0.8598
0.0237 8.0 608 0.5314 0.8497
0.0407 9.0 684 0.5484 0.8497
0.0074 10.0 760 0.5780 0.8715
0.0366 11.0 836 0.5799 0.8631
0.0022 12.0 912 0.8054 0.8414
0.0514 13.0 988 0.5849 0.8748
0.0003 14.0 1064 0.6713 0.8664
0.0448 15.0 1140 0.6921 0.8715
0.0014 16.0 1216 0.6848 0.8631
0.0001 17.0 1292 0.7084 0.8648
0.0152 18.0 1368 0.8109 0.8681
0.0001 19.0 1444 0.7361 0.8698
0.004 20.0 1520 0.7743 0.8664
0.0035 21.0 1596 0.7272 0.8748
0.0282 22.0 1672 0.7515 0.8731
0.0001 23.0 1748 0.8060 0.8581
0.0001 24.0 1824 0.7763 0.8581
0.0156 25.0 1900 0.7302 0.8831
0.0068 26.0 1976 0.8763 0.8514
0.0045 27.0 2052 0.8144 0.8664
0.0058 28.0 2128 0.7716 0.8614
0.009 29.0 2204 0.8016 0.8664
0.0 30.0 2280 0.8234 0.8631
0.0087 31.0 2356 0.8420 0.8631
0.0102 32.0 2432 0.8218 0.8698
0.0 33.0 2508 0.8439 0.8564
0.0 34.0 2584 0.8448 0.8598
0.0154 35.0 2660 0.8638 0.8631
0.0044 36.0 2736 0.8664 0.8715
0.0088 37.0 2812 0.8649 0.8598
0.0 38.0 2888 0.8771 0.8598
0.0028 39.0 2964 0.8789 0.8631
0.0 40.0 3040 0.8645 0.8648
0.0044 41.0 3116 0.8681 0.8664
0.0 42.0 3192 0.8746 0.8631
0.0056 43.0 3268 0.8786 0.8664
0.0 44.0 3344 0.8858 0.8648
0.0 45.0 3420 0.8848 0.8648
0.0 46.0 3496 0.8858 0.8648
0.0 47.0 3572 0.8868 0.8631
0.0023 48.0 3648 0.8879 0.8631
0.0 49.0 3724 0.8884 0.8631
0.0 50.0 3800 0.8877 0.8631

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0