hkivancoral's picture
End of training
a320d01
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8735440931780366

smids_1x_deit_tiny_adamax_0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8884
  • Accuracy: 0.8735

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4433 1.0 75 0.4087 0.8136
0.2718 2.0 150 0.3393 0.8636
0.1523 3.0 225 0.3549 0.8602
0.1126 4.0 300 0.4203 0.8785
0.1857 5.0 375 0.5016 0.8702
0.1676 6.0 450 0.6812 0.8403
0.0685 7.0 525 0.6011 0.8719
0.0238 8.0 600 0.6670 0.8686
0.0519 9.0 675 0.6013 0.8686
0.0386 10.0 750 0.7008 0.8719
0.0148 11.0 825 0.7193 0.8619
0.0007 12.0 900 0.7563 0.8752
0.0241 13.0 975 0.7693 0.8636
0.0307 14.0 1050 0.8760 0.8636
0.0115 15.0 1125 0.7808 0.8719
0.0035 16.0 1200 0.7588 0.8669
0.0001 17.0 1275 0.8971 0.8619
0.0102 18.0 1350 0.7909 0.8719
0.0001 19.0 1425 0.7984 0.8636
0.004 20.0 1500 0.8206 0.8669
0.0001 21.0 1575 0.8515 0.8752
0.0 22.0 1650 0.7887 0.8752
0.0 23.0 1725 0.9036 0.8719
0.0001 24.0 1800 0.8151 0.8735
0.0 25.0 1875 0.8674 0.8669
0.0 26.0 1950 0.8463 0.8702
0.0044 27.0 2025 0.8541 0.8669
0.0043 28.0 2100 0.8322 0.8669
0.002 29.0 2175 0.8405 0.8686
0.0043 30.0 2250 0.8433 0.8686
0.0034 31.0 2325 0.8353 0.8752
0.0 32.0 2400 0.8744 0.8702
0.0 33.0 2475 0.8688 0.8669
0.0 34.0 2550 0.8557 0.8669
0.0091 35.0 2625 0.8746 0.8669
0.0 36.0 2700 0.8586 0.8686
0.0 37.0 2775 0.8715 0.8702
0.0 38.0 2850 0.8844 0.8719
0.0019 39.0 2925 0.8957 0.8735
0.0 40.0 3000 0.8803 0.8752
0.0031 41.0 3075 0.8802 0.8752
0.0 42.0 3150 0.8828 0.8752
0.0026 43.0 3225 0.8803 0.8735
0.003 44.0 3300 0.8878 0.8752
0.0 45.0 3375 0.8894 0.8702
0.0 46.0 3450 0.8874 0.8735
0.0024 47.0 3525 0.8958 0.8752
0.0 48.0 3600 0.8893 0.8735
0.0023 49.0 3675 0.8880 0.8735
0.0021 50.0 3750 0.8884 0.8735

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0