hkivancoral's picture
End of training
a9fea7c
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8933333333333333

smids_1x_deit_tiny_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6352
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7543 1.0 75 0.6805 0.7367
0.4751 2.0 150 0.5095 0.8067
0.4299 3.0 225 0.4326 0.83
0.3631 4.0 300 0.4020 0.85
0.2821 5.0 375 0.3807 0.8517
0.249 6.0 450 0.3472 0.8733
0.2583 7.0 525 0.3378 0.8767
0.1796 8.0 600 0.3350 0.88
0.19 9.0 675 0.3308 0.88
0.1195 10.0 750 0.3410 0.8717
0.1538 11.0 825 0.3347 0.8767
0.1042 12.0 900 0.3292 0.895
0.1212 13.0 975 0.3308 0.895
0.0747 14.0 1050 0.3402 0.885
0.0423 15.0 1125 0.3519 0.89
0.0318 16.0 1200 0.3697 0.8867
0.0388 17.0 1275 0.3821 0.8883
0.0223 18.0 1350 0.3957 0.885
0.0206 19.0 1425 0.4157 0.885
0.0272 20.0 1500 0.4298 0.8883
0.007 21.0 1575 0.4227 0.8917
0.0064 22.0 1650 0.4518 0.895
0.0167 23.0 1725 0.4704 0.89
0.0018 24.0 1800 0.4600 0.8867
0.0144 25.0 1875 0.4875 0.89
0.0149 26.0 1950 0.5302 0.8817
0.0149 27.0 2025 0.5247 0.8917
0.001 28.0 2100 0.5348 0.8883
0.0008 29.0 2175 0.5323 0.8883
0.0008 30.0 2250 0.5459 0.89
0.0005 31.0 2325 0.5595 0.8883
0.0008 32.0 2400 0.5625 0.8917
0.0049 33.0 2475 0.5790 0.8867
0.0102 34.0 2550 0.5778 0.89
0.0263 35.0 2625 0.6019 0.89
0.01 36.0 2700 0.5907 0.8883
0.0005 37.0 2775 0.6086 0.8867
0.0003 38.0 2850 0.6091 0.8917
0.0002 39.0 2925 0.6105 0.8883
0.0002 40.0 3000 0.6065 0.8933
0.0002 41.0 3075 0.6175 0.8883
0.0165 42.0 3150 0.6281 0.8917
0.0088 43.0 3225 0.6246 0.8883
0.0003 44.0 3300 0.6288 0.89
0.0015 45.0 3375 0.6290 0.89
0.0021 46.0 3450 0.6320 0.89
0.0189 47.0 3525 0.6360 0.8867
0.0002 48.0 3600 0.6334 0.8933
0.0003 49.0 3675 0.6347 0.8933
0.0086 50.0 3750 0.6352 0.8933

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0