hkivancoral's picture
End of training
3380f34
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.915

smids_10x_deit_tiny_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8586
  • Accuracy: 0.915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3782 1.0 750 0.3344 0.8667
0.2904 2.0 1500 0.3574 0.8483
0.2048 3.0 2250 0.3230 0.8817
0.2 4.0 3000 0.3479 0.8933
0.2233 5.0 3750 0.3431 0.8883
0.1334 6.0 4500 0.3350 0.9017
0.1268 7.0 5250 0.3335 0.8967
0.077 8.0 6000 0.4549 0.8883
0.0723 9.0 6750 0.3771 0.9067
0.0426 10.0 7500 0.4455 0.9017
0.0977 11.0 8250 0.4334 0.9067
0.0237 12.0 9000 0.5437 0.9
0.0358 13.0 9750 0.5148 0.885
0.0032 14.0 10500 0.6045 0.9083
0.0293 15.0 11250 0.6394 0.8933
0.0156 16.0 12000 0.6836 0.89
0.0548 17.0 12750 0.5770 0.9017
0.0127 18.0 13500 0.6663 0.8983
0.0203 19.0 14250 0.6791 0.905
0.0154 20.0 15000 0.6990 0.905
0.0128 21.0 15750 0.7251 0.9017
0.0003 22.0 16500 0.7324 0.8933
0.0024 23.0 17250 0.7123 0.9017
0.0015 24.0 18000 0.6502 0.9133
0.0109 25.0 18750 0.6676 0.9117
0.0004 26.0 19500 0.6984 0.9033
0.0105 27.0 20250 0.8181 0.8967
0.0029 28.0 21000 0.7764 0.9
0.0304 29.0 21750 0.7986 0.8967
0.008 30.0 22500 0.8233 0.895
0.0008 31.0 23250 0.8494 0.9033
0.0 32.0 24000 0.8041 0.91
0.0 33.0 24750 0.8842 0.9167
0.0 34.0 25500 0.7437 0.9233
0.0 35.0 26250 0.7405 0.925
0.0 36.0 27000 0.7962 0.9083
0.0059 37.0 27750 0.7867 0.9233
0.0 38.0 28500 0.8151 0.92
0.0 39.0 29250 0.8010 0.91
0.0 40.0 30000 0.8483 0.9133
0.0 41.0 30750 0.8225 0.9167
0.0 42.0 31500 0.8207 0.9167
0.0 43.0 32250 0.8290 0.915
0.0 44.0 33000 0.8408 0.915
0.0 45.0 33750 0.8374 0.9183
0.0 46.0 34500 0.8446 0.9167
0.0 47.0 35250 0.8518 0.915
0.0 48.0 36000 0.8526 0.915
0.0 49.0 36750 0.8568 0.9167
0.0 50.0 37500 0.8586 0.915

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2