hkivancoral's picture
End of training
987cee9
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_adamax_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8916666666666667

smids_10x_deit_tiny_adamax_0001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1802
  • Accuracy: 0.8917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2287 1.0 750 0.3453 0.8783
0.1774 2.0 1500 0.3819 0.8783
0.1288 3.0 2250 0.5077 0.8617
0.0591 4.0 3000 0.5258 0.8767
0.013 5.0 3750 0.7962 0.87
0.0441 6.0 4500 0.7798 0.875
0.0022 7.0 5250 0.8865 0.8783
0.0168 8.0 6000 0.9982 0.8817
0.0002 9.0 6750 0.9825 0.8833
0.012 10.0 7500 0.9837 0.8883
0.0139 11.0 8250 1.0185 0.88
0.0283 12.0 9000 1.0469 0.8767
0.0013 13.0 9750 1.1375 0.885
0.0051 14.0 10500 1.1468 0.8817
0.0 15.0 11250 1.1486 0.875
0.0211 16.0 12000 1.0421 0.8867
0.0 17.0 12750 1.1215 0.8783
0.0 18.0 13500 1.1501 0.8917
0.0001 19.0 14250 1.2352 0.88
0.0002 20.0 15000 1.2860 0.8883
0.0 21.0 15750 1.1704 0.8833
0.0 22.0 16500 1.0833 0.8933
0.0 23.0 17250 1.1109 0.8933
0.0 24.0 18000 1.1424 0.8933
0.0 25.0 18750 1.0812 0.89
0.0 26.0 19500 1.1046 0.8917
0.0 27.0 20250 1.1453 0.8883
0.0 28.0 21000 1.1203 0.885
0.0 29.0 21750 1.1015 0.8933
0.0 30.0 22500 1.1212 0.8967
0.0 31.0 23250 1.1480 0.8883
0.0 32.0 24000 1.1454 0.8833
0.0 33.0 24750 1.1314 0.8867
0.0 34.0 25500 1.1208 0.885
0.0 35.0 26250 1.1448 0.8833
0.0 36.0 27000 1.1486 0.8833
0.0 37.0 27750 1.1572 0.885
0.0 38.0 28500 1.1406 0.8867
0.0 39.0 29250 1.1768 0.89
0.0 40.0 30000 1.1690 0.885
0.0 41.0 30750 1.1715 0.8883
0.0 42.0 31500 1.1720 0.89
0.0 43.0 32250 1.1654 0.8917
0.0 44.0 33000 1.1692 0.8917
0.0 45.0 33750 1.1750 0.8917
0.0 46.0 34500 1.1770 0.8917
0.0 47.0 35250 1.1783 0.8917
0.0 48.0 36000 1.1786 0.8917
0.0 49.0 36750 1.1796 0.8917
0.0 50.0 37500 1.1802 0.8917

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2