hkivancoral's picture
End of training
87bdc5e
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6585365853658537

hushem_5x_deit_tiny_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7115
  • Accuracy: 0.6585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4348 1.0 28 1.3734 0.2439
1.3624 2.0 56 1.4229 0.2683
1.1348 3.0 84 1.1315 0.3902
0.9863 4.0 112 1.0099 0.6829
0.9002 5.0 140 0.8153 0.7317
0.8747 6.0 168 0.8078 0.7317
0.7431 7.0 196 0.8202 0.7073
0.7236 8.0 224 0.6730 0.7073
0.7214 9.0 252 0.7811 0.6829
0.7661 10.0 280 0.8373 0.6341
0.6997 11.0 308 0.7829 0.7073
0.5964 12.0 336 0.9580 0.5366
0.601 13.0 364 0.8593 0.6341
0.4989 14.0 392 0.8291 0.7317
0.484 15.0 420 0.8268 0.7317
0.3579 16.0 448 0.8735 0.6585
0.3201 17.0 476 1.3019 0.6341
0.2054 18.0 504 1.2022 0.6829
0.2162 19.0 532 1.3723 0.6098
0.2359 20.0 560 2.1538 0.5854
0.1213 21.0 588 1.4495 0.6829
0.1657 22.0 616 1.5861 0.6341
0.2091 23.0 644 1.3652 0.6585
0.0692 24.0 672 1.7622 0.6585
0.1092 25.0 700 2.0505 0.6585
0.0584 26.0 728 2.2675 0.5610
0.0661 27.0 756 1.7051 0.7073
0.0353 28.0 784 1.9468 0.6585
0.0164 29.0 812 2.4092 0.6341
0.0019 30.0 840 2.7744 0.6585
0.0033 31.0 868 3.2900 0.5610
0.0105 32.0 896 2.4900 0.5854
0.0008 33.0 924 2.5105 0.6341
0.0047 34.0 952 2.0758 0.7073
0.0004 35.0 980 2.7140 0.6585
0.0 36.0 1008 2.9025 0.6585
0.0013 37.0 1036 2.6654 0.6585
0.0 38.0 1064 2.6558 0.6829
0.0 39.0 1092 2.6667 0.6585
0.0 40.0 1120 2.6779 0.6585
0.0 41.0 1148 2.6850 0.6585
0.0 42.0 1176 2.6917 0.6585
0.0 43.0 1204 2.6986 0.6585
0.0 44.0 1232 2.7032 0.6585
0.0 45.0 1260 2.7065 0.6585
0.0 46.0 1288 2.7090 0.6585
0.0 47.0 1316 2.7107 0.6585
0.0 48.0 1344 2.7115 0.6585
0.0 49.0 1372 2.7115 0.6585
0.0 50.0 1400 2.7115 0.6585

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0