metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_adamax_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5777777777777777
hushem_5x_deit_tiny_adamax_00001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.6641
- Accuracy: 0.5778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3635 | 1.0 | 27 | 1.4130 | 0.2667 |
1.0042 | 2.0 | 54 | 1.4711 | 0.2222 |
0.8161 | 3.0 | 81 | 1.3782 | 0.2667 |
0.718 | 4.0 | 108 | 1.4066 | 0.3778 |
0.5558 | 5.0 | 135 | 1.3265 | 0.4444 |
0.4509 | 6.0 | 162 | 1.2556 | 0.5111 |
0.3768 | 7.0 | 189 | 1.2546 | 0.5333 |
0.3011 | 8.0 | 216 | 1.2575 | 0.5333 |
0.2105 | 9.0 | 243 | 1.2766 | 0.5111 |
0.1649 | 10.0 | 270 | 1.2667 | 0.5333 |
0.1073 | 11.0 | 297 | 1.2756 | 0.5333 |
0.09 | 12.0 | 324 | 1.2325 | 0.5333 |
0.0621 | 13.0 | 351 | 1.3118 | 0.5111 |
0.0505 | 14.0 | 378 | 1.2588 | 0.5111 |
0.0376 | 15.0 | 405 | 1.2895 | 0.5111 |
0.0263 | 16.0 | 432 | 1.3784 | 0.5333 |
0.0213 | 17.0 | 459 | 1.3797 | 0.5556 |
0.0147 | 18.0 | 486 | 1.3696 | 0.5556 |
0.0099 | 19.0 | 513 | 1.4119 | 0.5778 |
0.0067 | 20.0 | 540 | 1.4307 | 0.5333 |
0.0051 | 21.0 | 567 | 1.4626 | 0.5556 |
0.0036 | 22.0 | 594 | 1.4677 | 0.5778 |
0.0029 | 23.0 | 621 | 1.5080 | 0.5778 |
0.0025 | 24.0 | 648 | 1.5082 | 0.5778 |
0.002 | 25.0 | 675 | 1.5166 | 0.5556 |
0.0019 | 26.0 | 702 | 1.5536 | 0.5556 |
0.0018 | 27.0 | 729 | 1.5513 | 0.5556 |
0.0016 | 28.0 | 756 | 1.5675 | 0.5556 |
0.0015 | 29.0 | 783 | 1.5750 | 0.5778 |
0.0014 | 30.0 | 810 | 1.5873 | 0.5778 |
0.0012 | 31.0 | 837 | 1.5953 | 0.6 |
0.0013 | 32.0 | 864 | 1.6002 | 0.6 |
0.001 | 33.0 | 891 | 1.6127 | 0.6 |
0.0011 | 34.0 | 918 | 1.6173 | 0.6 |
0.0009 | 35.0 | 945 | 1.6219 | 0.5778 |
0.001 | 36.0 | 972 | 1.6280 | 0.6 |
0.0009 | 37.0 | 999 | 1.6357 | 0.6 |
0.0009 | 38.0 | 1026 | 1.6422 | 0.6 |
0.0009 | 39.0 | 1053 | 1.6437 | 0.6 |
0.0008 | 40.0 | 1080 | 1.6487 | 0.6 |
0.0008 | 41.0 | 1107 | 1.6556 | 0.5778 |
0.0007 | 42.0 | 1134 | 1.6560 | 0.6 |
0.0008 | 43.0 | 1161 | 1.6560 | 0.6 |
0.0007 | 44.0 | 1188 | 1.6595 | 0.6 |
0.0007 | 45.0 | 1215 | 1.6630 | 0.5778 |
0.0007 | 46.0 | 1242 | 1.6626 | 0.6 |
0.0007 | 47.0 | 1269 | 1.6639 | 0.5778 |
0.0008 | 48.0 | 1296 | 1.6641 | 0.5778 |
0.0008 | 49.0 | 1323 | 1.6641 | 0.5778 |
0.0007 | 50.0 | 1350 | 1.6641 | 0.5778 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0