hkivancoral's picture
End of training
501fb36
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5777777777777777

hushem_5x_deit_tiny_adamax_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6641
  • Accuracy: 0.5778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3635 1.0 27 1.4130 0.2667
1.0042 2.0 54 1.4711 0.2222
0.8161 3.0 81 1.3782 0.2667
0.718 4.0 108 1.4066 0.3778
0.5558 5.0 135 1.3265 0.4444
0.4509 6.0 162 1.2556 0.5111
0.3768 7.0 189 1.2546 0.5333
0.3011 8.0 216 1.2575 0.5333
0.2105 9.0 243 1.2766 0.5111
0.1649 10.0 270 1.2667 0.5333
0.1073 11.0 297 1.2756 0.5333
0.09 12.0 324 1.2325 0.5333
0.0621 13.0 351 1.3118 0.5111
0.0505 14.0 378 1.2588 0.5111
0.0376 15.0 405 1.2895 0.5111
0.0263 16.0 432 1.3784 0.5333
0.0213 17.0 459 1.3797 0.5556
0.0147 18.0 486 1.3696 0.5556
0.0099 19.0 513 1.4119 0.5778
0.0067 20.0 540 1.4307 0.5333
0.0051 21.0 567 1.4626 0.5556
0.0036 22.0 594 1.4677 0.5778
0.0029 23.0 621 1.5080 0.5778
0.0025 24.0 648 1.5082 0.5778
0.002 25.0 675 1.5166 0.5556
0.0019 26.0 702 1.5536 0.5556
0.0018 27.0 729 1.5513 0.5556
0.0016 28.0 756 1.5675 0.5556
0.0015 29.0 783 1.5750 0.5778
0.0014 30.0 810 1.5873 0.5778
0.0012 31.0 837 1.5953 0.6
0.0013 32.0 864 1.6002 0.6
0.001 33.0 891 1.6127 0.6
0.0011 34.0 918 1.6173 0.6
0.0009 35.0 945 1.6219 0.5778
0.001 36.0 972 1.6280 0.6
0.0009 37.0 999 1.6357 0.6
0.0009 38.0 1026 1.6422 0.6
0.0009 39.0 1053 1.6437 0.6
0.0008 40.0 1080 1.6487 0.6
0.0008 41.0 1107 1.6556 0.5778
0.0007 42.0 1134 1.6560 0.6
0.0008 43.0 1161 1.6560 0.6
0.0007 44.0 1188 1.6595 0.6
0.0007 45.0 1215 1.6630 0.5778
0.0007 46.0 1242 1.6626 0.6
0.0007 47.0 1269 1.6639 0.5778
0.0008 48.0 1296 1.6641 0.5778
0.0008 49.0 1323 1.6641 0.5778
0.0007 50.0 1350 1.6641 0.5778

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0