hkivancoral's picture
End of training
0d5870c
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5853658536585366

hushem_5x_deit_base_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0680
  • Accuracy: 0.5854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4163 1.0 28 1.3604 0.1951
1.3947 2.0 56 1.3473 0.2195
1.3604 3.0 84 1.3349 0.2683
1.3392 4.0 112 1.3241 0.2927
1.3444 5.0 140 1.3143 0.3171
1.3238 6.0 168 1.3050 0.3415
1.3103 7.0 196 1.2955 0.3659
1.2905 8.0 224 1.2862 0.3902
1.2713 9.0 252 1.2769 0.4146
1.2521 10.0 280 1.2674 0.4390
1.2419 11.0 308 1.2580 0.4390
1.2274 12.0 336 1.2492 0.4634
1.2017 13.0 364 1.2403 0.5122
1.2089 14.0 392 1.2314 0.5366
1.1882 15.0 420 1.2229 0.5366
1.1838 16.0 448 1.2144 0.5610
1.1566 17.0 476 1.2059 0.5610
1.1584 18.0 504 1.1980 0.6098
1.1748 19.0 532 1.1896 0.6098
1.1362 20.0 560 1.1817 0.6098
1.1338 21.0 588 1.1741 0.5854
1.1033 22.0 616 1.1667 0.5854
1.0957 23.0 644 1.1590 0.5854
1.0836 24.0 672 1.1521 0.5854
1.0697 25.0 700 1.1452 0.5610
1.078 26.0 728 1.1389 0.5366
1.0636 27.0 756 1.1332 0.5610
1.0604 28.0 784 1.1274 0.5366
1.0075 29.0 812 1.1217 0.5610
1.0554 30.0 840 1.1163 0.5610
1.0238 31.0 868 1.1110 0.5610
0.9869 32.0 896 1.1060 0.5854
0.9963 33.0 924 1.1019 0.5610
1.0156 34.0 952 1.0973 0.5854
0.9827 35.0 980 1.0931 0.5854
0.9853 36.0 1008 1.0896 0.5854
0.9677 37.0 1036 1.0862 0.5854
0.9703 38.0 1064 1.0831 0.5854
0.9924 39.0 1092 1.0803 0.5854
0.9509 40.0 1120 1.0778 0.5854
0.9744 41.0 1148 1.0755 0.5854
0.957 42.0 1176 1.0735 0.5854
0.958 43.0 1204 1.0718 0.5854
0.965 44.0 1232 1.0705 0.5854
0.9524 45.0 1260 1.0695 0.5854
0.9551 46.0 1288 1.0687 0.5854
0.9588 47.0 1316 1.0682 0.5854
0.9894 48.0 1344 1.0680 0.5854
0.9401 49.0 1372 1.0680 0.5854
0.9662 50.0 1400 1.0680 0.5854

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0