hkivancoral's picture
End of training
def8865
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5476190476190477

hushem_5x_deit_base_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1129
  • Accuracy: 0.5476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4194 1.0 28 1.4029 0.1667
1.3727 2.0 56 1.3926 0.1667
1.3518 3.0 84 1.3828 0.1905
1.3497 4.0 112 1.3744 0.1905
1.3305 5.0 140 1.3656 0.2381
1.2982 6.0 168 1.3571 0.2619
1.2935 7.0 196 1.3493 0.2619
1.2822 8.0 224 1.3412 0.2857
1.2479 9.0 252 1.3334 0.3095
1.2377 10.0 280 1.3251 0.3333
1.2239 11.0 308 1.3164 0.3095
1.2188 12.0 336 1.3079 0.3095
1.2085 13.0 364 1.2995 0.3095
1.1996 14.0 392 1.2913 0.3333
1.1629 15.0 420 1.2831 0.3810
1.1847 16.0 448 1.2748 0.4048
1.1633 17.0 476 1.2664 0.4048
1.1189 18.0 504 1.2580 0.4048
1.1351 19.0 532 1.2497 0.4286
1.1255 20.0 560 1.2415 0.4286
1.0873 21.0 588 1.2339 0.4524
1.0919 22.0 616 1.2256 0.4524
1.0941 23.0 644 1.2182 0.4524
1.0702 24.0 672 1.2106 0.4762
1.0623 25.0 700 1.2031 0.4762
1.03 26.0 728 1.1958 0.4762
1.0368 27.0 756 1.1889 0.4762
1.0301 28.0 784 1.1818 0.4762
1.0348 29.0 812 1.1756 0.5
1.0312 30.0 840 1.1689 0.5
1.0387 31.0 868 1.1627 0.5238
1.0057 32.0 896 1.1569 0.5
1.0052 33.0 924 1.1517 0.5
0.9799 34.0 952 1.1467 0.5
1.0233 35.0 980 1.1420 0.5
0.9665 36.0 1008 1.1375 0.5
0.976 37.0 1036 1.1338 0.5
0.9856 38.0 1064 1.1303 0.5
0.9687 39.0 1092 1.1270 0.5
0.9553 40.0 1120 1.1240 0.5238
0.9573 41.0 1148 1.1217 0.5476
0.9651 42.0 1176 1.1193 0.5476
0.9476 43.0 1204 1.1173 0.5476
0.938 44.0 1232 1.1158 0.5476
0.9255 45.0 1260 1.1146 0.5476
0.9569 46.0 1288 1.1137 0.5476
0.9503 47.0 1316 1.1131 0.5476
0.9115 48.0 1344 1.1129 0.5476
0.9482 49.0 1372 1.1129 0.5476
0.9401 50.0 1400 1.1129 0.5476

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0