hkivancoral's picture
End of training
6dde77b
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_rms_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6904761904761905

hushem_40x_deit_tiny_rms_001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6233
  • Accuracy: 0.6905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1473 1.0 219 0.8756 0.6190
0.9719 2.0 438 0.9893 0.5714
0.7611 3.0 657 0.7217 0.7619
0.6995 4.0 876 0.7516 0.6429
0.6928 5.0 1095 1.0447 0.5952
0.6114 6.0 1314 0.9410 0.6667
0.4906 7.0 1533 1.4457 0.5238
0.4956 8.0 1752 1.1229 0.6429
0.3708 9.0 1971 0.5610 0.7381
0.3213 10.0 2190 1.1632 0.6667
0.279 11.0 2409 0.8853 0.7381
0.26 12.0 2628 1.0316 0.6905
0.2004 13.0 2847 0.8001 0.7619
0.2396 14.0 3066 1.0495 0.7381
0.1937 15.0 3285 1.2736 0.7381
0.1386 16.0 3504 0.9949 0.7381
0.1459 17.0 3723 1.2302 0.6905
0.0754 18.0 3942 1.9238 0.6667
0.0996 19.0 4161 1.4396 0.6905
0.0438 20.0 4380 1.1891 0.7143
0.1349 21.0 4599 1.4228 0.7381
0.0058 22.0 4818 1.2340 0.7619
0.0345 23.0 5037 1.1630 0.6667
0.0461 24.0 5256 2.1318 0.6429
0.0595 25.0 5475 1.7499 0.6905
0.004 26.0 5694 1.6488 0.6905
0.0014 27.0 5913 1.8134 0.6905
0.0335 28.0 6132 2.3351 0.6905
0.0071 29.0 6351 2.4170 0.5714
0.0006 30.0 6570 1.5965 0.7381
0.0014 31.0 6789 2.0937 0.7381
0.0419 32.0 7008 1.8845 0.6905
0.042 33.0 7227 3.6234 0.6190
0.0018 34.0 7446 1.5177 0.6905
0.027 35.0 7665 1.3824 0.7857
0.0005 36.0 7884 2.3915 0.7619
0.0226 37.0 8103 1.6001 0.7381
0.001 38.0 8322 2.3141 0.6905
0.0 39.0 8541 2.5460 0.7143
0.0 40.0 8760 2.6724 0.6905
0.0 41.0 8979 2.7005 0.6905
0.0 42.0 9198 2.8171 0.7143
0.0 43.0 9417 2.9876 0.7143
0.0 44.0 9636 3.1125 0.7143
0.0 45.0 9855 3.2479 0.7143
0.0 46.0 10074 3.4344 0.7143
0.0 47.0 10293 3.4573 0.7143
0.0 48.0 10512 3.5752 0.6905
0.0 49.0 10731 3.5910 0.6905
0.0 50.0 10950 3.6233 0.6905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2