hkivancoral's picture
End of training
9baa25b
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_rms_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6666666666666666

hushem_40x_deit_tiny_rms_0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.3313
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1374 1.0 215 1.3718 0.7111
0.0248 2.0 430 1.5033 0.7778
0.0726 3.0 645 1.7295 0.7556
0.0372 4.0 860 1.5869 0.7778
0.0411 5.0 1075 1.1809 0.7778
0.0235 6.0 1290 2.1699 0.6889
0.0004 7.0 1505 1.8564 0.7333
0.0351 8.0 1720 2.6913 0.5556
0.0436 9.0 1935 1.7899 0.6889
0.0311 10.0 2150 2.2763 0.7333
0.0318 11.0 2365 2.1440 0.7111
0.0601 12.0 2580 1.3738 0.8
0.0036 13.0 2795 1.9492 0.7556
0.0024 14.0 3010 2.0010 0.7778
0.0119 15.0 3225 2.9477 0.7111
0.0001 16.0 3440 2.0050 0.8222
0.0 17.0 3655 2.2043 0.7778
0.0045 18.0 3870 2.9253 0.6889
0.0002 19.0 4085 2.4235 0.7333
0.0 20.0 4300 3.4852 0.6
0.0276 21.0 4515 3.0762 0.6667
0.0098 22.0 4730 3.3340 0.6222
0.0328 23.0 4945 1.8687 0.8
0.0 24.0 5160 1.6806 0.8
0.0 25.0 5375 2.3408 0.7333
0.0208 26.0 5590 2.3251 0.7778
0.0 27.0 5805 2.8347 0.7111
0.0 28.0 6020 2.2742 0.7333
0.0 29.0 6235 2.4267 0.7111
0.0 30.0 6450 2.5951 0.7111
0.0 31.0 6665 2.7772 0.6889
0.0 32.0 6880 2.9769 0.6889
0.0 33.0 7095 3.1694 0.6889
0.0 34.0 7310 3.3770 0.6889
0.0 35.0 7525 3.5369 0.6889
0.0 36.0 7740 3.6892 0.7111
0.0 37.0 7955 3.8241 0.6889
0.0 38.0 8170 3.9473 0.6889
0.0 39.0 8385 4.0424 0.6889
0.0 40.0 8600 4.1157 0.6889
0.0 41.0 8815 4.1738 0.6667
0.0 42.0 9030 4.2155 0.6667
0.0 43.0 9245 4.2470 0.6667
0.0 44.0 9460 4.2729 0.6667
0.0 45.0 9675 4.2929 0.6667
0.0 46.0 9890 4.3080 0.6667
0.0 47.0 10105 4.3190 0.6667
0.0 48.0 10320 4.3263 0.6667
0.0 49.0 10535 4.3304 0.6667
0.0 50.0 10750 4.3313 0.6667

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2