hkivancoral's picture
End of training
32900df
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_tiny_f2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6666666666666666
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_tiny_f2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5181
- Accuracy: 0.6667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1217 | 1.0 | 107 | 1.3584 | 0.6 |
| 0.0223 | 2.0 | 214 | 1.3123 | 0.7111 |
| 0.0028 | 2.99 | 321 | 1.5329 | 0.6667 |
| 0.0063 | 4.0 | 429 | 1.6403 | 0.6889 |
| 0.0001 | 5.0 | 536 | 1.5983 | 0.6667 |
| 0.0 | 6.0 | 643 | 1.5035 | 0.6667 |
| 0.0 | 6.99 | 750 | 1.5067 | 0.6444 |
| 0.0 | 8.0 | 858 | 1.5121 | 0.6667 |
| 0.0 | 9.0 | 965 | 1.5168 | 0.6667 |
| 0.0 | 9.98 | 1070 | 1.5181 | 0.6667 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1