hkivancoral's picture
End of training
62e43c4
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_lr001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4186046511627907

hushem_1x_deit_tiny_sgd_lr001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3137
  • Accuracy: 0.4186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5163 0.3023
1.6001 2.0 12 1.4936 0.3023
1.6001 3.0 18 1.4729 0.3023
1.5411 4.0 24 1.4550 0.3023
1.4977 5.0 30 1.4401 0.3023
1.4977 6.0 36 1.4267 0.3023
1.4396 7.0 42 1.4159 0.3023
1.4396 8.0 48 1.4066 0.3023
1.4314 9.0 54 1.3991 0.3023
1.3704 10.0 60 1.3909 0.3023
1.3704 11.0 66 1.3847 0.3023
1.3552 12.0 72 1.3793 0.3023
1.3552 13.0 78 1.3735 0.3256
1.3421 14.0 84 1.3686 0.3488
1.3202 15.0 90 1.3638 0.3488
1.3202 16.0 96 1.3593 0.3721
1.2948 17.0 102 1.3558 0.3953
1.2948 18.0 108 1.3518 0.3953
1.2928 19.0 114 1.3488 0.3953
1.2647 20.0 120 1.3454 0.3953
1.2647 21.0 126 1.3427 0.3953
1.2556 22.0 132 1.3402 0.3953
1.2556 23.0 138 1.3379 0.3953
1.253 24.0 144 1.3353 0.3953
1.2437 25.0 150 1.3327 0.3953
1.2437 26.0 156 1.3306 0.4186
1.2239 27.0 162 1.3289 0.3953
1.2239 28.0 168 1.3270 0.3953
1.2275 29.0 174 1.3251 0.3953
1.2028 30.0 180 1.3234 0.3953
1.2028 31.0 186 1.3221 0.3953
1.202 32.0 192 1.3205 0.3953
1.202 33.0 198 1.3191 0.3953
1.194 34.0 204 1.3178 0.3953
1.1993 35.0 210 1.3169 0.4186
1.1993 36.0 216 1.3160 0.4186
1.1904 37.0 222 1.3153 0.4186
1.1904 38.0 228 1.3147 0.4186
1.1785 39.0 234 1.3142 0.4186
1.2086 40.0 240 1.3139 0.4186
1.2086 41.0 246 1.3138 0.4186
1.1893 42.0 252 1.3137 0.4186
1.1893 43.0 258 1.3137 0.4186
1.2 44.0 264 1.3137 0.4186
1.1775 45.0 270 1.3137 0.4186
1.1775 46.0 276 1.3137 0.4186
1.1852 47.0 282 1.3137 0.4186
1.1852 48.0 288 1.3137 0.4186
1.1783 49.0 294 1.3137 0.4186
1.1702 50.0 300 1.3137 0.4186

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1