hkivancoral's picture
End of training
7dd6f8c
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.27906976744186046

hushem_1x_deit_tiny_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5555
  • Accuracy: 0.2791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.6995 0.2791
1.7242 2.0 12 1.6902 0.2791
1.7242 3.0 18 1.6819 0.2791
1.6909 4.0 24 1.6741 0.2791
1.6461 5.0 30 1.6664 0.2791
1.6461 6.0 36 1.6587 0.2791
1.6466 7.0 42 1.6518 0.2791
1.6466 8.0 48 1.6448 0.2791
1.6495 9.0 54 1.6384 0.2791
1.6495 10.0 60 1.6323 0.2791
1.6495 11.0 66 1.6267 0.2791
1.6244 12.0 72 1.6213 0.2791
1.6244 13.0 78 1.6166 0.2791
1.593 14.0 84 1.6117 0.2791
1.6183 15.0 90 1.6071 0.2791
1.6183 16.0 96 1.6026 0.2791
1.6105 17.0 102 1.5985 0.2558
1.6105 18.0 108 1.5946 0.2558
1.5599 19.0 114 1.5912 0.2558
1.5756 20.0 120 1.5878 0.2558
1.5756 21.0 126 1.5845 0.2558
1.5692 22.0 132 1.5817 0.2558
1.5692 23.0 138 1.5789 0.2558
1.544 24.0 144 1.5763 0.2558
1.548 25.0 150 1.5738 0.2558
1.548 26.0 156 1.5716 0.2791
1.549 27.0 162 1.5695 0.2791
1.549 28.0 168 1.5675 0.2791
1.5593 29.0 174 1.5658 0.2791
1.528 30.0 180 1.5641 0.2791
1.528 31.0 186 1.5627 0.2791
1.5394 32.0 192 1.5615 0.2791
1.5394 33.0 198 1.5603 0.2791
1.4822 34.0 204 1.5592 0.2791
1.5618 35.0 210 1.5583 0.2791
1.5618 36.0 216 1.5575 0.2791
1.5279 37.0 222 1.5568 0.2791
1.5279 38.0 228 1.5563 0.2791
1.5233 39.0 234 1.5559 0.2791
1.5255 40.0 240 1.5556 0.2791
1.5255 41.0 246 1.5555 0.2791
1.5147 42.0 252 1.5555 0.2791
1.5147 43.0 258 1.5555 0.2791
1.5048 44.0 264 1.5555 0.2791
1.5464 45.0 270 1.5555 0.2791
1.5464 46.0 276 1.5555 0.2791
1.5243 47.0 282 1.5555 0.2791
1.5243 48.0 288 1.5555 0.2791
1.5049 49.0 294 1.5555 0.2791
1.5545 50.0 300 1.5555 0.2791

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1