hkivancoral's picture
End of training
1a11b1e
|
raw
history blame
4.81 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.47619047619047616

hushem_1x_deit_tiny_rms_001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0712
  • Accuracy: 0.4762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 5.0165 0.2381
4.2481 2.0 12 3.3074 0.2381
4.2481 3.0 18 1.5288 0.2619
2.0024 4.0 24 1.5375 0.2381
1.6731 5.0 30 1.4069 0.2619
1.6731 6.0 36 1.8969 0.2381
1.5329 7.0 42 1.4811 0.2381
1.5329 8.0 48 1.4117 0.2619
1.475 9.0 54 1.4704 0.2619
1.4639 10.0 60 1.4459 0.2381
1.4639 11.0 66 1.3572 0.4524
1.4524 12.0 72 1.2630 0.4524
1.4524 13.0 78 1.2843 0.4524
1.4025 14.0 84 1.3420 0.2857
1.3666 15.0 90 1.4060 0.2381
1.3666 16.0 96 1.2621 0.3810
1.3178 17.0 102 1.2969 0.2857
1.3178 18.0 108 1.2881 0.3333
1.3667 19.0 114 1.3980 0.2857
1.3043 20.0 120 1.5195 0.2857
1.3043 21.0 126 1.1841 0.4048
1.2859 22.0 132 1.0567 0.5238
1.2859 23.0 138 1.2258 0.2619
1.2496 24.0 144 1.2372 0.2857
1.252 25.0 150 1.4386 0.3333
1.252 26.0 156 1.1416 0.3810
1.2296 27.0 162 1.0872 0.4286
1.2296 28.0 168 1.4121 0.2857
1.1581 29.0 174 1.0555 0.5476
1.2027 30.0 180 1.1296 0.4762
1.2027 31.0 186 1.2095 0.4048
1.1595 32.0 192 1.0821 0.4762
1.1595 33.0 198 1.1681 0.3810
1.1909 34.0 204 1.1147 0.4762
1.1121 35.0 210 1.0734 0.4048
1.1121 36.0 216 1.0002 0.5238
1.1218 37.0 222 1.1912 0.3095
1.1218 38.0 228 1.0883 0.4524
1.1024 39.0 234 1.1229 0.4286
1.0678 40.0 240 1.0903 0.4762
1.0678 41.0 246 1.0717 0.4762
1.058 42.0 252 1.0712 0.4762
1.058 43.0 258 1.0712 0.4762
1.0512 44.0 264 1.0712 0.4762
1.0743 45.0 270 1.0712 0.4762
1.0743 46.0 276 1.0712 0.4762
1.0691 47.0 282 1.0712 0.4762
1.0691 48.0 288 1.0712 0.4762
1.052 49.0 294 1.0712 0.4762
1.066 50.0 300 1.0712 0.4762

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1