hkivancoral's picture
End of training
a938d45
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5813953488372093

hushem_1x_deit_tiny_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2114
  • Accuracy: 0.5814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4590 0.2558
2.1915 2.0 12 1.4820 0.2558
2.1915 3.0 18 1.4635 0.3488
1.4733 4.0 24 1.6507 0.2558
1.4003 5.0 30 1.5038 0.2558
1.4003 6.0 36 1.5372 0.2093
1.28 7.0 42 1.4420 0.3023
1.28 8.0 48 1.3681 0.3488
1.2064 9.0 54 1.4133 0.3023
1.1588 10.0 60 1.2991 0.4419
1.1588 11.0 66 1.2547 0.4651
1.133 12.0 72 1.2924 0.4884
1.133 13.0 78 1.2566 0.4884
1.0357 14.0 84 1.1915 0.5349
0.8616 15.0 90 1.2058 0.5116
0.8616 16.0 96 1.1399 0.5349
0.6595 17.0 102 1.1462 0.5581
0.6595 18.0 108 1.2856 0.5116
0.501 19.0 114 1.1528 0.6047
0.3761 20.0 120 1.2487 0.6047
0.3761 21.0 126 1.9335 0.5581
0.1818 22.0 132 2.0855 0.5349
0.1818 23.0 138 2.8198 0.5349
0.0677 24.0 144 1.5837 0.6279
0.0703 25.0 150 2.1739 0.5116
0.0703 26.0 156 2.0640 0.5581
0.0053 27.0 162 2.0886 0.5814
0.0053 28.0 168 2.1352 0.5814
0.0006 29.0 174 2.1434 0.5814
0.0004 30.0 180 2.1524 0.5814
0.0004 31.0 186 2.1594 0.5814
0.0003 32.0 192 2.1659 0.5814
0.0003 33.0 198 2.1759 0.5814
0.0003 34.0 204 2.1825 0.5814
0.0003 35.0 210 2.1918 0.5814
0.0003 36.0 216 2.1964 0.5814
0.0002 37.0 222 2.2014 0.5814
0.0002 38.0 228 2.2049 0.5814
0.0002 39.0 234 2.2075 0.5814
0.0002 40.0 240 2.2099 0.5814
0.0002 41.0 246 2.2110 0.5814
0.0002 42.0 252 2.2114 0.5814
0.0002 43.0 258 2.2114 0.5814
0.0002 44.0 264 2.2114 0.5814
0.0002 45.0 270 2.2114 0.5814
0.0002 46.0 276 2.2114 0.5814
0.0002 47.0 282 2.2114 0.5814
0.0002 48.0 288 2.2114 0.5814
0.0002 49.0 294 2.2114 0.5814
0.0002 50.0 300 2.2114 0.5814

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1