hkivancoral's picture
End of training
d746602
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5555555555555556

hushem_1x_deit_tiny_rms_0001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4166
  • Accuracy: 0.5556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 2.1314 0.2444
2.0481 2.0 12 1.5573 0.2444
2.0481 3.0 18 1.4598 0.2444
1.5099 4.0 24 1.4194 0.2444
1.4253 5.0 30 1.3528 0.2667
1.4253 6.0 36 1.6348 0.2444
1.3319 7.0 42 1.3901 0.4444
1.3319 8.0 48 1.3151 0.2889
1.2142 9.0 54 1.3395 0.3333
1.1416 10.0 60 1.4176 0.3556
1.1416 11.0 66 1.9072 0.2667
0.9889 12.0 72 1.7446 0.3111
0.9889 13.0 78 1.4748 0.3778
0.8552 14.0 84 1.7450 0.3778
0.6798 15.0 90 1.6042 0.4889
0.6798 16.0 96 1.5863 0.4222
0.563 17.0 102 1.9311 0.4
0.563 18.0 108 1.9509 0.4444
0.3845 19.0 114 2.1256 0.4667
0.2041 20.0 120 2.4131 0.4889
0.2041 21.0 126 2.1029 0.4667
0.1874 22.0 132 2.0412 0.5778
0.1874 23.0 138 2.4952 0.4889
0.0735 24.0 144 2.8992 0.4667
0.0229 25.0 150 2.7495 0.5556
0.0229 26.0 156 3.2879 0.4667
0.0293 27.0 162 3.1526 0.5111
0.0293 28.0 168 3.0123 0.5333
0.0023 29.0 174 3.0812 0.5556
0.0008 30.0 180 3.1384 0.5556
0.0008 31.0 186 3.2017 0.5556
0.0005 32.0 192 3.2443 0.5556
0.0005 33.0 198 3.2806 0.5556
0.0005 34.0 204 3.3167 0.5556
0.0004 35.0 210 3.3393 0.5556
0.0004 36.0 216 3.3662 0.5556
0.0004 37.0 222 3.3843 0.5556
0.0004 38.0 228 3.3970 0.5556
0.0003 39.0 234 3.4053 0.5556
0.0003 40.0 240 3.4123 0.5556
0.0003 41.0 246 3.4159 0.5556
0.0003 42.0 252 3.4166 0.5556
0.0003 43.0 258 3.4166 0.5556
0.0003 44.0 264 3.4166 0.5556
0.0003 45.0 270 3.4166 0.5556
0.0003 46.0 276 3.4166 0.5556
0.0003 47.0 282 3.4166 0.5556
0.0003 48.0 288 3.4166 0.5556
0.0003 49.0 294 3.4166 0.5556
0.0003 50.0 300 3.4166 0.5556

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1