hkivancoral's picture
End of training
231ae94
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6222222222222222

hushem_1x_deit_tiny_rms_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4676
  • Accuracy: 0.6222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3067 0.4222
1.3733 2.0 12 1.3951 0.4444
1.3733 3.0 18 1.3740 0.4222
0.6558 4.0 24 1.2467 0.5333
0.3343 5.0 30 1.5107 0.4667
0.3343 6.0 36 1.6079 0.4444
0.1446 7.0 42 1.2227 0.5333
0.1446 8.0 48 1.2018 0.5333
0.0575 9.0 54 1.2408 0.5111
0.0237 10.0 60 1.2581 0.5111
0.0237 11.0 66 1.4007 0.6
0.0072 12.0 72 1.2676 0.6444
0.0072 13.0 78 1.2933 0.5778
0.0036 14.0 84 1.3326 0.6222
0.0025 15.0 90 1.3074 0.6444
0.0025 16.0 96 1.3484 0.6222
0.002 17.0 102 1.3984 0.6222
0.002 18.0 108 1.3916 0.6222
0.0017 19.0 114 1.3871 0.6222
0.0014 20.0 120 1.4171 0.6222
0.0014 21.0 126 1.4207 0.6222
0.0012 22.0 132 1.4218 0.6222
0.0012 23.0 138 1.4371 0.6222
0.0011 24.0 144 1.4404 0.6222
0.001 25.0 150 1.4321 0.6222
0.001 26.0 156 1.4218 0.6222
0.0009 27.0 162 1.4367 0.6222
0.0009 28.0 168 1.4359 0.6222
0.0008 29.0 174 1.4387 0.6222
0.0008 30.0 180 1.4566 0.6222
0.0008 31.0 186 1.4528 0.6222
0.0007 32.0 192 1.4517 0.6222
0.0007 33.0 198 1.4535 0.6222
0.0007 34.0 204 1.4488 0.6444
0.0007 35.0 210 1.4494 0.6444
0.0007 36.0 216 1.4561 0.6444
0.0007 37.0 222 1.4595 0.6444
0.0007 38.0 228 1.4667 0.6222
0.0006 39.0 234 1.4671 0.6222
0.0007 40.0 240 1.4686 0.6222
0.0007 41.0 246 1.4681 0.6222
0.0006 42.0 252 1.4676 0.6222
0.0006 43.0 258 1.4676 0.6222
0.0006 44.0 264 1.4676 0.6222
0.0006 45.0 270 1.4676 0.6222
0.0006 46.0 276 1.4676 0.6222
0.0006 47.0 282 1.4676 0.6222
0.0006 48.0 288 1.4676 0.6222
0.0006 49.0 294 1.4676 0.6222
0.0006 50.0 300 1.4676 0.6222

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1