hkivancoral's picture
End of training
d41162d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_lr0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5777777777777777

hushem_1x_deit_tiny_adamax_lr0001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3365
  • Accuracy: 0.5778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 1.6054 0.2444
No log 2.0 3 1.3436 0.3556
No log 2.67 4 1.3392 0.2889
No log 4.0 6 1.3661 0.2444
No log 4.67 7 1.3117 0.3333
No log 6.0 9 1.4031 0.2889
1.1803 6.67 10 1.2845 0.4222
1.1803 8.0 12 1.3559 0.3333
1.1803 8.67 13 1.3178 0.4
1.1803 10.0 15 1.1302 0.5778
1.1803 10.67 16 1.2145 0.5556
1.1803 12.0 18 1.3484 0.4
1.1803 12.67 19 1.1709 0.5333
0.3935 14.0 21 1.1495 0.5556
0.3935 14.67 22 1.2656 0.4889
0.3935 16.0 24 1.1929 0.5333
0.3935 16.67 25 1.1205 0.5556
0.3935 18.0 27 1.1729 0.5333
0.3935 18.67 28 1.2656 0.5111
0.0911 20.0 30 1.3172 0.5556
0.0911 20.67 31 1.2343 0.5556
0.0911 22.0 33 1.1439 0.6
0.0911 22.67 34 1.1167 0.6222
0.0911 24.0 36 1.1537 0.6
0.0911 24.67 37 1.2658 0.5778
0.0911 26.0 39 1.3705 0.5556
0.0269 26.67 40 1.3468 0.5778
0.0269 28.0 42 1.2914 0.6
0.0269 28.67 43 1.2807 0.6
0.0269 30.0 45 1.2833 0.6
0.0269 30.67 46 1.3004 0.5778
0.0269 32.0 48 1.3271 0.5778
0.0269 32.67 49 1.3342 0.5778
0.0102 33.33 50 1.3365 0.5778

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1