hkivancoral's picture
End of training
3ecf5d0
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_lr00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.28888888888888886

hushem_1x_deit_tiny_adamax_lr00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4306
  • Accuracy: 0.2889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 1.6419 0.1111
No log 2.0 3 1.5215 0.1556
No log 2.67 4 1.5000 0.1778
No log 4.0 6 1.4887 0.2444
No log 4.67 7 1.4849 0.2222
No log 6.0 9 1.4754 0.2444
1.3642 6.67 10 1.4684 0.2667
1.3642 8.0 12 1.4571 0.2667
1.3642 8.67 13 1.4523 0.2667
1.3642 10.0 15 1.4422 0.2667
1.3642 10.67 16 1.4392 0.2444
1.3642 12.0 18 1.4341 0.2444
1.3642 12.67 19 1.4327 0.2444
1.1012 14.0 21 1.4319 0.2667
1.1012 14.67 22 1.4329 0.2667
1.1012 16.0 24 1.4330 0.2889
1.1012 16.67 25 1.4333 0.2889
1.1012 18.0 27 1.4342 0.2889
1.1012 18.67 28 1.4339 0.2889
0.9232 20.0 30 1.4351 0.2889
0.9232 20.67 31 1.4354 0.2889
0.9232 22.0 33 1.4352 0.2889
0.9232 22.67 34 1.4353 0.2889
0.9232 24.0 36 1.4349 0.2889
0.9232 24.67 37 1.4347 0.2889
0.9232 26.0 39 1.4341 0.2889
0.8235 26.67 40 1.4334 0.2889
0.8235 28.0 42 1.4325 0.2889
0.8235 28.67 43 1.4325 0.2889
0.8235 30.0 45 1.4317 0.2889
0.8235 30.67 46 1.4312 0.2889
0.8235 32.0 48 1.4307 0.2889
0.8235 32.67 49 1.4307 0.2889
0.7752 33.33 50 1.4306 0.2889

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1