hkivancoral's picture
End of training
84f4684
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7804878048780488

hushem_1x_deit_tiny_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9886
  • Accuracy: 0.7805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.2270 0.3415
1.4194 2.0 12 1.0630 0.5122
1.4194 3.0 18 0.7493 0.7073
0.7944 4.0 24 0.7294 0.7561
0.3715 5.0 30 0.6953 0.6585
0.3715 6.0 36 0.5928 0.8293
0.1471 7.0 42 0.5485 0.8049
0.1471 8.0 48 0.8515 0.6829
0.0288 9.0 54 0.5381 0.8293
0.0065 10.0 60 0.8647 0.7317
0.0065 11.0 66 0.7563 0.7805
0.0018 12.0 72 0.7678 0.8049
0.0018 13.0 78 0.8017 0.8049
0.0008 14.0 84 0.8475 0.7805
0.0005 15.0 90 0.8926 0.7805
0.0005 16.0 96 0.9216 0.7805
0.0004 17.0 102 0.9424 0.7805
0.0004 18.0 108 0.9465 0.7805
0.0003 19.0 114 0.9461 0.7805
0.0003 20.0 120 0.9448 0.7805
0.0003 21.0 126 0.9474 0.7805
0.0003 22.0 132 0.9525 0.7805
0.0003 23.0 138 0.9551 0.7805
0.0003 24.0 144 0.9581 0.7805
0.0002 25.0 150 0.9626 0.7805
0.0002 26.0 156 0.9650 0.7805
0.0002 27.0 162 0.9711 0.7805
0.0002 28.0 168 0.9713 0.7805
0.0002 29.0 174 0.9730 0.7805
0.0002 30.0 180 0.9754 0.7805
0.0002 31.0 186 0.9786 0.7805
0.0002 32.0 192 0.9820 0.7805
0.0002 33.0 198 0.9835 0.7805
0.0002 34.0 204 0.9850 0.7805
0.0002 35.0 210 0.9850 0.7805
0.0002 36.0 216 0.9860 0.7805
0.0002 37.0 222 0.9866 0.7805
0.0002 38.0 228 0.9873 0.7805
0.0002 39.0 234 0.9879 0.7805
0.0002 40.0 240 0.9883 0.7805
0.0002 41.0 246 0.9886 0.7805
0.0002 42.0 252 0.9886 0.7805
0.0002 43.0 258 0.9886 0.7805
0.0002 44.0 264 0.9886 0.7805
0.0002 45.0 270 0.9886 0.7805
0.0002 46.0 276 0.9886 0.7805
0.0002 47.0 282 0.9886 0.7805
0.0002 48.0 288 0.9886 0.7805
0.0002 49.0 294 0.9886 0.7805
0.0002 50.0 300 0.9886 0.7805

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1