hkivancoral's picture
End of training
d056d0a
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5581395348837209

hushem_1x_deit_tiny_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8253
  • Accuracy: 0.5581

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4425 0.2791
1.416 2.0 12 1.3728 0.3023
1.416 3.0 18 1.3124 0.3488
1.2388 4.0 24 1.2509 0.3721
1.1051 5.0 30 1.1962 0.3488
1.1051 6.0 36 1.1517 0.3721
0.9682 7.0 42 1.1212 0.3721
0.9682 8.0 48 1.0990 0.4186
0.8769 9.0 54 1.0709 0.4884
0.7643 10.0 60 1.0587 0.5116
0.7643 11.0 66 1.0451 0.4884
0.6717 12.0 72 1.0399 0.5581
0.6717 13.0 78 1.0224 0.5349
0.5988 14.0 84 1.0021 0.4884
0.5291 15.0 90 0.9852 0.4884
0.5291 16.0 96 0.9774 0.5116
0.4581 17.0 102 0.9701 0.5116
0.4581 18.0 108 0.9598 0.5116
0.3895 19.0 114 0.9410 0.5814
0.3415 20.0 120 0.9223 0.5581
0.3415 21.0 126 0.9172 0.5349
0.3044 22.0 132 0.9106 0.5349
0.3044 23.0 138 0.9037 0.5581
0.2632 24.0 144 0.8935 0.5581
0.2425 25.0 150 0.8847 0.5814
0.2425 26.0 156 0.8721 0.5581
0.2102 27.0 162 0.8625 0.5581
0.2102 28.0 168 0.8546 0.5581
0.189 29.0 174 0.8540 0.5814
0.1637 30.0 180 0.8496 0.6047
0.1637 31.0 186 0.8464 0.6047
0.1512 32.0 192 0.8420 0.5581
0.1512 33.0 198 0.8380 0.5581
0.1374 34.0 204 0.8346 0.5581
0.1287 35.0 210 0.8327 0.5581
0.1287 36.0 216 0.8290 0.5581
0.124 37.0 222 0.8276 0.5581
0.124 38.0 228 0.8271 0.5581
0.1186 39.0 234 0.8265 0.5581
0.1159 40.0 240 0.8255 0.5581
0.1159 41.0 246 0.8253 0.5581
0.1139 42.0 252 0.8253 0.5581
0.1139 43.0 258 0.8253 0.5581
0.1142 44.0 264 0.8253 0.5581
0.1107 45.0 270 0.8253 0.5581
0.1107 46.0 276 0.8253 0.5581
0.1118 47.0 282 0.8253 0.5581
0.1118 48.0 288 0.8253 0.5581
0.1159 49.0 294 0.8253 0.5581
0.1095 50.0 300 0.8253 0.5581

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1