hkivancoral's picture
End of training
4564558
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_sgd_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.13333333333333333

hushem_1x_deit_base_sgd_0001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4779
  • Accuracy: 0.1333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4794 0.1333
1.4241 2.0 12 1.4793 0.1333
1.4241 3.0 18 1.4793 0.1333
1.4299 4.0 24 1.4792 0.1333
1.4212 5.0 30 1.4791 0.1333
1.4212 6.0 36 1.4790 0.1333
1.4284 7.0 42 1.4790 0.1333
1.4284 8.0 48 1.4789 0.1333
1.4338 9.0 54 1.4788 0.1333
1.417 10.0 60 1.4788 0.1333
1.417 11.0 66 1.4787 0.1333
1.4253 12.0 72 1.4786 0.1333
1.4253 13.0 78 1.4786 0.1333
1.4157 14.0 84 1.4785 0.1333
1.4129 15.0 90 1.4785 0.1333
1.4129 16.0 96 1.4784 0.1333
1.4248 17.0 102 1.4784 0.1333
1.4248 18.0 108 1.4784 0.1333
1.4287 19.0 114 1.4783 0.1333
1.4283 20.0 120 1.4783 0.1333
1.4283 21.0 126 1.4782 0.1333
1.4273 22.0 132 1.4782 0.1333
1.4273 23.0 138 1.4782 0.1333
1.4431 24.0 144 1.4781 0.1333
1.4247 25.0 150 1.4781 0.1333
1.4247 26.0 156 1.4781 0.1333
1.4236 27.0 162 1.4781 0.1333
1.4236 28.0 168 1.4780 0.1333
1.426 29.0 174 1.4780 0.1333
1.4223 30.0 180 1.4780 0.1333
1.4223 31.0 186 1.4780 0.1333
1.418 32.0 192 1.4779 0.1333
1.418 33.0 198 1.4779 0.1333
1.4337 34.0 204 1.4779 0.1333
1.4133 35.0 210 1.4779 0.1333
1.4133 36.0 216 1.4779 0.1333
1.4229 37.0 222 1.4779 0.1333
1.4229 38.0 228 1.4779 0.1333
1.4393 39.0 234 1.4779 0.1333
1.4246 40.0 240 1.4779 0.1333
1.4246 41.0 246 1.4779 0.1333
1.4293 42.0 252 1.4779 0.1333
1.4293 43.0 258 1.4779 0.1333
1.4096 44.0 264 1.4779 0.1333
1.4337 45.0 270 1.4779 0.1333
1.4337 46.0 276 1.4779 0.1333
1.428 47.0 282 1.4779 0.1333
1.428 48.0 288 1.4779 0.1333
1.4333 49.0 294 1.4779 0.1333
1.4174 50.0 300 1.4779 0.1333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0