hilaltekgoz's picture
Model save
3888359 verified
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-mms-1b-turkish-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: tr
          split: test[:10]
          args: tr
        metrics:
          - name: Wer
            type: wer
            value: 0.42857142857142855

wav2vec2-large-mms-1b-turkish-colab

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4348
  • Wer: 0.4286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3297 0.12 100 0.5375 0.4571
0.2726 0.25 200 0.5256 0.4714
0.265 0.37 300 0.4696 0.4571
0.263 0.49 400 0.4405 0.4286
0.2574 0.61 500 0.4363 0.4143
0.2517 0.74 600 0.4592 0.4286
0.2454 0.86 700 0.4445 0.4143
0.2425 0.98 800 0.4348 0.4286

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0