whisper-finetune / README.md
hiiamsid's picture
End of training
d3a1107
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-base
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper Base Medical
    results: []

Whisper Base Medical

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2595
  • Wer: 24.0503

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer
0.3836 1.0 184 0.5763 29.2094
0.2101 2.0 368 0.3948 30.2361
0.1197 3.0 552 0.3029 27.1047
0.0528 4.0 737 0.2583 24.1273
0.0261 4.99 920 0.2595 24.0503

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3