Image-to-Text
Hezar
Persian

A CRNN model for Persian OCR. This model is based on a simple CNN + LSTM architecture inspired by this paper.

This is a successor model to our previous model hezarai/crnn-base-fa-64x256. The improvements include:

  • 5X larger dataset
  • Change input image size from 64x256 to 32x384
  • Increase max output length from 64 to 96 (Max length of the samples in the dataset was 48 to handle CTC loss issues)
  • Support numbers and special characters (see id2label in model_config.yaml)
  • Auto-handling of LTR characters like digits in between the text

Note that this model is only optimized for printed/scanned documents and works best on texts with a length of up to 50-ish characters. (For an end-to-end OCR pipeline, use a text detector model first to extract text boxes preferrably in word-level and then use this model), but it can be used to be fine-tuned on other domains like license plate or handwritten texts.

Usage

pip install hezar
from hezar.models import Model

crnn = Model.load("hezarai/crnn-fa-printed-96-long")
texts = crnn.predict(["sample_image.jpg"])
print(texts)
Downloads last month
565
Inference Examples
Inference API (serverless) does not yet support hezar models for this pipeline type.

Model tree for hezarai/crnn-fa-printed-96-long

Finetunes
1 model

Spaces using hezarai/crnn-fa-printed-96-long 2

Collection including hezarai/crnn-fa-printed-96-long