german-bert-finetuned-ner

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0907
  • Precision: 0.8143
  • Recall: 0.8180
  • F1: 0.8161
  • Accuracy: 0.9893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 120 0.0715 0.7092 0.8 0.7518 0.9881
No log 2.0 240 0.0935 0.6588 0.8157 0.7289 0.9845
No log 3.0 360 0.0664 0.7303 0.7910 0.7594 0.9885
No log 4.0 480 0.0647 0.6691 0.8225 0.7379 0.9872
0.0027 5.0 600 0.0752 0.8409 0.7955 0.8176 0.9900
0.0027 6.0 720 0.0658 0.7105 0.8382 0.7691 0.9887
0.0027 7.0 840 0.0818 0.8364 0.8045 0.8202 0.9896
0.0027 8.0 960 0.0791 0.7660 0.8315 0.7974 0.9892
0.0013 9.0 1080 0.0791 0.7730 0.8112 0.7917 0.9893
0.0013 10.0 1200 0.0809 0.8117 0.8135 0.8126 0.9889
0.0013 11.0 1320 0.0851 0.8085 0.8157 0.8121 0.9894
0.0013 12.0 1440 0.0875 0.8361 0.8022 0.8188 0.9894
0.0004 13.0 1560 0.0892 0.8395 0.8112 0.8251 0.9893
0.0004 14.0 1680 0.0857 0.7978 0.8337 0.8154 0.9894
0.0004 15.0 1800 0.0848 0.7931 0.8270 0.8097 0.9895
0.0004 16.0 1920 0.0867 0.8053 0.8180 0.8116 0.9896
0.0002 17.0 2040 0.0866 0.7842 0.8247 0.8039 0.9891
0.0002 18.0 2160 0.0885 0.7952 0.8202 0.8075 0.9893
0.0002 19.0 2280 0.0895 0.7948 0.8180 0.8062 0.9894
0.0002 20.0 2400 0.0907 0.8143 0.8180 0.8161 0.9893

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.