wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f2
This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5206
- Accuracy: 0.7354
- Precision: 0.7320
- Recall: 0.7354
- F1 Score: 0.7335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|---|
0.6386 | 1.0 | 120 | 0.6121 | 0.7008 | 0.4912 | 0.7008 | 0.5776 |
0.603 | 2.0 | 240 | 0.5663 | 0.7144 | 0.6835 | 0.7144 | 0.6762 |
0.5758 | 3.0 | 360 | 0.5828 | 0.7029 | 0.6989 | 0.7029 | 0.7007 |
0.5724 | 4.0 | 480 | 0.5518 | 0.7238 | 0.6978 | 0.7238 | 0.6894 |
0.5412 | 5.0 | 600 | 0.5336 | 0.7082 | 0.6926 | 0.7082 | 0.6975 |
0.5295 | 6.0 | 720 | 0.5222 | 0.7280 | 0.7111 | 0.7280 | 0.7145 |
0.4851 | 7.0 | 840 | 0.5090 | 0.7312 | 0.7136 | 0.7312 | 0.7162 |
0.4639 | 8.0 | 960 | 0.5153 | 0.7259 | 0.7164 | 0.7259 | 0.7200 |
0.4606 | 9.0 | 1080 | 0.5233 | 0.7029 | 0.7241 | 0.7029 | 0.7104 |
0.4412 | 10.0 | 1200 | 0.5501 | 0.6998 | 0.7496 | 0.6998 | 0.7116 |
0.4106 | 11.0 | 1320 | 0.5262 | 0.7155 | 0.7398 | 0.7155 | 0.7235 |
0.3976 | 12.0 | 1440 | 0.5148 | 0.7374 | 0.7300 | 0.7374 | 0.7329 |
0.3917 | 13.0 | 1560 | 0.5194 | 0.7364 | 0.7338 | 0.7364 | 0.7350 |
0.3858 | 14.0 | 1680 | 0.5225 | 0.7259 | 0.7293 | 0.7259 | 0.7275 |
0.3853 | 15.0 | 1800 | 0.5206 | 0.7354 | 0.7320 | 0.7354 | 0.7335 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0