herobyeKung's picture
End of training
84b780e verified
metadata
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f1
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f1

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5229
  • Accuracy: 0.7448
  • Precision: 0.7291
  • Recall: 0.7448
  • F1 Score: 0.7303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
0.551 1.0 120 0.5535 0.7427 0.7285 0.7427 0.7311
0.5476 2.0 240 0.5530 0.7406 0.7259 0.7406 0.7285
0.5352 3.0 360 0.5528 0.7354 0.7261 0.7354 0.7294
0.5482 4.0 480 0.5531 0.7312 0.7278 0.7312 0.7293
0.5386 5.0 600 0.5547 0.7228 0.7236 0.7228 0.7232
0.5391 6.0 720 0.5467 0.7427 0.7303 0.7427 0.7335
0.5495 7.0 840 0.5506 0.7395 0.7305 0.7395 0.7337
0.5305 8.0 960 0.5444 0.7427 0.7321 0.7427 0.7353
0.5183 9.0 1080 0.5326 0.7448 0.7320 0.7448 0.7349
0.5065 10.0 1200 0.5218 0.7479 0.7314 0.7479 0.7297
0.4753 11.0 1320 0.5207 0.7469 0.7317 0.7469 0.7330
0.4731 12.0 1440 0.5233 0.7458 0.7302 0.7458 0.7312
0.4828 13.0 1560 0.5243 0.7458 0.7302 0.7458 0.7312
0.4662 14.0 1680 0.5229 0.7458 0.7306 0.7458 0.7321
0.472 15.0 1800 0.5229 0.7448 0.7291 0.7448 0.7303

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1