|
--- |
|
tags: |
|
- ultralyticsplus |
|
- yolov5 |
|
- ultralytics |
|
- yolo |
|
- vision |
|
- object-detection |
|
- pytorch |
|
- awesome-yolov8-models |
|
- indonesia |
|
- aksara |
|
- aksarajawa |
|
|
|
model-index: |
|
- name: hermanshid/yolo-aksara-jawa |
|
results: |
|
- task: |
|
type: object-detection |
|
|
|
metrics: |
|
- type: precision |
|
value: 0.995 |
|
name: [email protected](box) |
|
inference: false |
|
--- |
|
|
|
# YOLOv5 for Aksara Jawa |
|
|
|
<div align="center"> |
|
<img width="640" alt="hermanshid/aksarajawa" src="https://huggingface.co./hermanshid/yolo-aksara-jawa/resolve/main/thumbnail.jpg"> |
|
</div> |
|
|
|
## Dataset |
|
Dataset available in [kaggle](https://www.kaggle.com/datasets/hermansugiharto/aksara-jawa-yolo-v5-dataset) |
|
## Supported Labels |
|
```python |
|
[ |
|
"ba", "ca", "da", "dha", "ga", "ha", "ja", "ka", "la", "ma", |
|
"na", "nga", "nya", "pa", "ra", "sa", "ta", "tha", "wa", "ya" |
|
] |
|
``` |
|
|
|
## How to use |
|
- Install library |
|
|
|
`pip install yolov5==7.0.5 torch` |
|
|
|
## Load model and perform prediction |
|
```python |
|
import yolov5 |
|
from PIL import Image |
|
|
|
model = yolov5.load(models_id) |
|
|
|
model.overrides['conf'] = 0.25 # NMS confidence threshold |
|
model.overrides['iou'] = 0.45 # NMS IoU threshold |
|
model.overrides['max_det'] = 1000 # maximum number of detections per image |
|
|
|
# set image |
|
image = 'https://huggingface.co./spaces/hermanshid/aksara-jawa-space/raw/main/test_images/example1.jpg' |
|
|
|
# perform inference |
|
results = model.predict(image) |
|
|
|
# observe results |
|
print(results[0].boxes) |
|
render = render_result(model=model, image=image, result=results[0]) |
|
render.show() |
|
|
|
``` |
|
|
|
|