yolo-aksara-jawa / README.md
hermanshid's picture
add readme
ea92a7a
|
raw
history blame
1.58 kB
metadata
tags:
  - ultralyticsplus
  - yolov5
  - ultralytics
  - yolo
  - vision
  - object-detection
  - pytorch
  - awesome-yolov8-models
  - indonesia
  - aksara
  - aksarajawa
model-index:
  - name: hermanshid/yolo-aksara-jawa
    results:
      - task:
          type: object-detection
        metrics:
          - type: precision
            value: 0.995
            name: [email protected](box)
inference: false

YOLOv5 for Aksara Jawa

hermanshid/aksarajawa

Dataset

Dataset available in kaggle

Supported Labels

[
    "ba", "ca", "da", "dha", "ga", "ha", "ja", "ka", "la", "ma",
    "na", "nga", "nya", "pa", "ra", "sa", "ta", "tha", "wa", "ya"
]

How to use

  • Install library

pip install yolov5==7.0.5 torch

Load model and perform prediction

import yolov5
from PIL import Image

model = yolov5.load(models_id)

model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://huggingface.co./spaces/hermanshid/aksara-jawa-space/raw/main/test_images/example1.jpg'

# perform inference
results = model.predict(image)

# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()