Edit model card

Model Card for Model ID

Direct Use

Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct") model = AutoModelForCausalLM.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct", device_map='auto', torch_dtype=torch.bfloat16)

text = """

Input:

ุณู„ุงู… ุนู„ูŠูƒู… ุงุดุนุฑ ุจุถูŠู‚ ููŠ ุงู„ุชู†ูุณ ูˆุงุนุงู†ูŠ ู…ู† ูƒุซุฑุฉ ุงู„ุจู„ุบู…

Response:

""" stop_word = "###END###"

Encode the input text

inputs = tokenizer(text, return_tensors='pt').to('cuda:0')

Remove token type ids if present, not all models use them

inputs.pop("token_type_ids", None)

Generating outputs with stopping criteria

outputs = model.generate( **inputs, max_new_tokens=512, do_sample=False, early_stopping=True, temperature=0.8, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.encode(stop_word, add_special_tokens=False)[0] # Set EOS token to your stop word ) outputs = tokenizer.decode(outputs[0], skip_special_tokens=True) print(outputs)

Input:

ุณู„ุงู… ุนู„ูŠูƒู… ุงุดุนุฑ ุจุถูŠู‚ ููŠ ุงู„ุชู†ูุณ ูˆุงุนุงู†ูŠ ู…ู† ูƒุซุฑุฉ ุงู„ุจู„ุบู…

Response:

ูˆุนู„ูŠูƒู… ุงู„ุณู„ุงู…! ุฃู†ุง ู‡ู†ุง ู„ู…ุณุงุนุฏุชูƒ. ุถูŠู‚ ุงู„ุชู†ูุณ ู…ุน ูˆุฌูˆุฏ ุจู„ุบู… ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† ู…ุคุดุฑุงู‹ ุนู„ู‰ ูˆุฌูˆุฏ ุนุฏูˆู‰ ููŠ ุงู„ุฑุฆุฉ ุฃูˆ ุงู„ู‚ุตุจุงุช.

ุฃูˆุตูŠ ุจุฃู† ุชู‚ูˆู… ุจุฒูŠุงุฑุฉ ุทุจูŠุจ ู…ุฎุชุต ุจุฃู…ุฑุงุถ ุงู„ุฑุฆุฉ ูˆุงู„ุตุฏุฑูŠุฉ ู„ู„ุญุตูˆู„ ุนู„ู‰ ุชุดุฎูŠุต ุฏู‚ูŠู‚. ูŠู…ูƒู† ู„ู„ุทุจูŠุจ ุฃู† ูŠุทู„ุจ ุฅุฌุฑุงุก ูุญูˆุตุงุช ุฏู…ุŒ ุฃุดุนุฉ ุนู„ู‰ ุงู„ุตุฏุฑุŒ ุฃูˆ ุญุชู‰ ุงุฎุชุจุงุฑุงุช ุฃุฎุฑู‰ ู…ุซู„ ุชุฎุทูŠุท ุงู„ุฑุฆุฉ ู„ุชุญุฏูŠุฏ ู†ูˆุน ุงู„ุนุฏูˆู‰ ูˆุงู„ู…ุถุงุฏ ุงู„ู…ู†ุงุณุจ ู„ู‡ุง.

ุฅุฐุง ูƒู†ุช ุชุฑุบุจุŒ ูŠู…ูƒู†ู†ูŠ ู…ุณุงุนุฏุชูƒ ููŠ ุงู„ุนุซูˆุฑ ุนู„ู‰ ุทุจูŠุจ ู…ุฎุชุต ุจุฃู…ุฑุงุถ ุงู„ุฑุฆุฉ ูˆุงู„ุตุฏุฑูŠุฉ ููŠ ู…ู†ุทู‚ุชูƒ. ู‡ู„ ุชูˆุฏ ู…ุนุฑูุฉ ู…ุนู„ูˆู…ุงุช ุนู† ุงู„ุฃุทุจุงุก ุงู„ู…ุชุงุญูŠู† ููŠ ู…ู†ุทู‚ุชูƒุŸ

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
19
Safetensors
Model size
8.03B params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.