hcene's picture
hcene/finetuned-distilcamemBERT_nli_legalquestions
26a61fd verified
metadata
license: mit
base_model: cmarkea/distilcamembert-base-nli
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilCamemBERT_nli_on_legal_data
    results: []

distilCamemBERT_nli_on_legal_data

This model is a fine-tuned version of cmarkea/distilcamembert-base-nli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7470
  • Accuracy: 0.7384
  • Precision: 0.7415
  • Recall: 0.7395
  • F1: 0.7378
  • Ratio: 0.3297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
1.3001 0.14 10 0.8533 0.6452 0.6683 0.6459 0.6525 0.2903
0.9775 0.27 20 0.7170 0.6918 0.7191 0.6944 0.6639 0.3513
0.8096 0.41 30 0.6432 0.7204 0.7222 0.7218 0.7213 0.3297
0.9883 0.55 40 0.6914 0.7204 0.7382 0.7228 0.7064 0.3297
0.9221 0.68 50 0.6597 0.7563 0.7582 0.7574 0.7570 0.3297
0.8253 0.82 60 0.6639 0.7563 0.7802 0.7568 0.7440 0.3297
0.9096 0.96 70 0.6612 0.7384 0.7484 0.7392 0.7319 0.3297
0.8466 1.1 80 0.6884 0.7168 0.7534 0.7195 0.6884 0.3297
0.8457 1.23 90 0.6884 0.7563 0.7898 0.7567 0.7397 0.3297
0.836 1.37 100 0.6409 0.7563 0.7711 0.7569 0.7488 0.3297
0.7878 1.51 110 0.6876 0.7276 0.7324 0.7286 0.7249 0.3297
0.8107 1.64 120 0.6720 0.7419 0.7518 0.7427 0.7361 0.3297
0.782 1.78 130 0.7397 0.7419 0.7518 0.7427 0.7361 0.3297
0.7728 1.92 140 0.6921 0.7455 0.7551 0.7463 0.7402 0.3297
0.7704 2.05 150 0.6882 0.7419 0.7518 0.7427 0.7361 0.3297
0.7593 2.19 160 0.7163 0.7348 0.7487 0.7355 0.7304 0.3226
0.7995 2.33 170 0.6639 0.7419 0.7518 0.7427 0.7361 0.3297
0.7657 2.47 180 0.6906 0.7885 0.8418 0.7887 0.7720 0.3297
0.7758 2.6 190 0.7577 0.7133 0.7154 0.7146 0.7134 0.3297
0.8269 2.74 200 0.8168 0.5591 0.6324 0.5596 0.5804 0.2151
0.7721 2.88 210 0.6721 0.7706 0.7924 0.7711 0.7615 0.3297
0.7098 3.01 220 0.6917 0.7133 0.7157 0.7145 0.7129 0.3297
0.7683 3.15 230 0.7175 0.7168 0.7192 0.7181 0.7168 0.3297
0.6907 3.29 240 0.7298 0.7491 0.7598 0.7499 0.7434 0.3297
0.7013 3.42 250 0.7363 0.7634 0.7794 0.7641 0.7562 0.3297
0.7852 3.56 260 0.7616 0.7025 0.7181 0.7034 0.7052 0.3082
0.7375 3.7 270 0.7247 0.7849 0.8127 0.7853 0.7753 0.3297
0.7242 3.84 280 0.7199 0.7921 0.8182 0.7925 0.7838 0.3297
0.7135 3.97 290 0.7190 0.7742 0.7907 0.7748 0.7677 0.3297
0.7501 4.11 300 0.7104 0.7921 0.8292 0.7924 0.7805 0.3297
0.663 4.25 310 0.7579 0.7921 0.8643 0.7922 0.7720 0.3297
0.7316 4.38 320 0.7671 0.7312 0.7347 0.7323 0.7301 0.3297
0.7045 4.52 330 0.7673 0.7204 0.7227 0.7217 0.7206 0.3297
0.7316 4.66 340 0.7421 0.7849 0.8096 0.7854 0.7764 0.3297
0.7667 4.79 350 0.7269 0.7527 0.7576 0.7536 0.7512 0.3297
0.7109 4.93 360 0.7305 0.7742 0.7907 0.7748 0.7677 0.3297
0.7677 5.07 370 0.7805 0.7885 0.8226 0.7888 0.7773 0.3297
0.6988 5.21 380 0.7531 0.7921 0.8182 0.7925 0.7838 0.3297
0.7119 5.34 390 0.7396 0.7670 0.7773 0.7677 0.7630 0.3297
0.6535 5.48 400 0.7259 0.7634 0.7714 0.7642 0.7604 0.3297
0.6732 5.62 410 0.7301 0.7921 0.8292 0.7924 0.7805 0.3297
0.7243 5.75 420 0.7094 0.7849 0.8127 0.7853 0.7753 0.3297
0.7367 5.89 430 0.7266 0.7670 0.7759 0.7678 0.7637 0.3297
0.7464 6.03 440 0.7929 0.7957 0.8277 0.7960 0.7860 0.3297
0.6836 6.16 450 0.7844 0.7957 0.8209 0.7961 0.7880 0.3297
0.6901 6.3 460 0.7724 0.7706 0.7837 0.7713 0.7654 0.3297
0.6776 6.44 470 0.7513 0.7670 0.7806 0.7677 0.7613 0.3297
0.6388 6.58 480 0.7491 0.7384 0.7410 0.7395 0.7383 0.3297
0.7258 6.71 490 0.7361 0.7599 0.7695 0.7606 0.7557 0.3297
0.7458 6.85 500 0.7777 0.7993 0.8483 0.7994 0.7856 0.3297
0.7937 6.99 510 0.7797 0.7921 0.8336 0.7923 0.7793 0.3297
0.6984 7.12 520 0.7597 0.7634 0.7714 0.7642 0.7604 0.3297
0.7206 7.26 530 0.7470 0.7384 0.7415 0.7395 0.7378 0.3297

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2