idt5-base-qg_adapter_v2

This model is a fine-tuned version of muchad/idt5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7050
  • Rouge1: 0.4251
  • Rouge2: 0.2075
  • Rougel: 0.3983
  • Rougelsum: 0.3984
  • Bleu: 0.1471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleu
2.4083 1.0 7645 1.8277 0.3795 0.1682 0.3512 0.3512 0.1180
2.2612 2.0 15290 1.7645 0.4158 0.1983 0.3882 0.3884 0.1400
2.2144 3.0 22935 1.7297 0.4230 0.2058 0.3963 0.3965 0.1453
2.1663 4.0 30580 1.7051 0.4232 0.2064 0.3970 0.3971 0.1461
2.1538 5.0 38225 1.7050 0.4251 0.2075 0.3983 0.3984 0.1471

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.4.0a0+f70bd71a48.nv24.06
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for hawalurahman/idt5-base-qg_adapter_v2

Base model

muchad/idt5-base
Adapter
(6)
this model