idt5-base-qaqg-TydiQA-v1
This model is a fine-tuned version of muchad/idt5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8328
- Rouge1: 0.5111
- Rouge2: 0.3387
- Rougel: 0.5091
- Rougelsum: 0.5094
- Bleu: 0.3213
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
---|---|---|---|---|---|---|---|---|
1.554 | 1.0 | 1141 | 1.0170 | 0.4244 | 0.2646 | 0.4236 | 0.4242 | 0.2574 |
1.1296 | 2.0 | 2282 | 0.8916 | 0.4669 | 0.2959 | 0.4653 | 0.4656 | 0.2839 |
0.9521 | 3.0 | 3423 | 0.8648 | 0.4889 | 0.3195 | 0.4867 | 0.4873 | 0.3026 |
0.8317 | 4.0 | 4564 | 0.8361 | 0.5115 | 0.3401 | 0.5095 | 0.5098 | 0.3188 |
0.7622 | 5.0 | 5705 | 0.8328 | 0.5111 | 0.3387 | 0.5091 | 0.5094 | 0.3213 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 115
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for hawalurahman/idt5-base-qaqg-TydiQA-v1
Base model
muchad/idt5-base